尿里带血是什么原因女性| 25羟基维生素d是什么| 女性掉发严重是什么原因| 肠道易激惹综合症是什么症状| 男人精子少是什么原因| 肤色黑穿什么颜色| 胳膊肘疼痛是什么原因| 脸上长红色的痘痘是什么原因| 早搏是什么症状| 猪狗不如是什么意思| 脚底干裂起硬皮是什么原因怎么治| 癫痫病是什么症状| 变色龙形容什么样的人| 爱好是什么意思| 不知不觉是什么意思| 邋遢是什么意思| 盆浴是什么意思| 荨麻疹吃什么药效果好| 飧泄是什么意思| 维生素k2是什么| 世袭罔替什么意思| 年轻人心悸是什么原因| 什么的粉墙| 癌胚抗原高是什么意思| 天梭表什么档次| 地雷是什么意思| 枸杞和红枣泡水喝有什么好处| 眼睛周围长斑是什么原因引起的| 二代身份证是什么意思| 压迫硬膜囊是什么意思| 什么大专好就业| 胡子长的快是什么原因| 什么时候验孕最准确| 降压药什么时候吃| 梦见孩子被蛇咬是什么意思| 实时更新是什么意思| 急性荨麻疹吃什么药| 王加申念什么| 什么水果利尿| 佛性是什么意思| 一个三点水一个令念什么| 蜂窝数据什么意思| 1月2日是什么星座| 人为什么会长白头发| 铁观音是属于什么茶| 淋巴结肿大用什么药| 硝酸咪康唑乳膏和酮康唑乳膏有什么区别| 耳顺是什么意思| 慢是什么意思| 如你所愿是什么意思| 女人手脚发热吃什么药| 下巴长硬包是什么原因| 心脏搭桥后最怕什么| 8月出生的是什么星座| 爱睡觉是什么原因| 脚趾骨折是什么感觉| 吃维生素b2有什么好处和副作用| 四不放过是指什么| 装藏是什么意思| 舌头无苔是什么原因| 糖类抗原高是什么意思| 肝炎是什么病| 养流浪猫需要注意什么| 三个七念什么| 煤气是什么味道| 什么时候放暑假| 什么是佛跳墙| 脑鸣吃什么药| 乳酸脱氢酶偏低是什么意思| 子宫内膜粘连有什么症状| 天壤之别是什么意思| 耳朵响是什么原因引起的| 什么的大圆盘| 气管炎的症状吃什么药好得快| 人放屁多是什么原因| 弯刀裤适合什么人穿| 送老师什么礼物| 冬天怕冷夏天怕热是什么原因| 肌无力是什么病| 梅菜是什么菜| 四月十一日是什么星座| 宋江是什么星| 为什么不建议割鼻息肉| 晚上10点属于什么时辰| 世界上最长的河流是什么| 盆腔积液用什么药| 不治身亡是什么意思| 什么是团队| 狗狗肠胃炎吃什么药| 混动是什么意思| 急腹症是什么意思| 枸杞泡水喝有什么作用和功效| 孩子生化了是什么意思| 什么地诉说| 多愁善感的动物是什么生肖| 报仇是什么意思| 有甲状腺结节不能吃什么| 符号是什么意思| 沐沐是什么意思| 乳酸高是什么原因| bobby什么意思| 膀胱尿潴留是什么意思| 看望病人买什么水果| 法克油是什么意思| 得不偿失是什么意思| 卵巢多囊样改变是什么意思| 什么邮票最值钱| 尿液特别黄是什么原因引起的| 性有什么好处和坏处| 为什么要吃叶酸| 孕妇手麻是什么原因引起的| 小孩个子矮小吃什么促进生长发育| 什么叫指标到校| 甲状腺有什么功能| 低氧血症是什么意思| 胆结石属于什么科| 眼睛散光是什么症状| 什么是假性高血压| b超和彩超有什么区别| 肩膀发麻是什么原因| 金牛女跟什么星座最配| 蜱虫咬了什么症状| 脾胃不好吃什么水果好| 1953年属什么生肖| 怀孕可以吃什么水果| 尿酸高什么引起的| ppi是什么药| 三月三号是什么星座| 脑供血不足吃什么中成药好| 句号代表什么意思| 食伤代表什么| 985和211有什么区别| 牙刷什么样的刷毛最好| 1972年是什么命| 1973年属牛是什么命| 脸上出油多是什么原因| 举案齐眉是什么意思| 吃金蝉有什么好处| 胃疼屁多是什么原因| 圆脸女生适合什么发型| 梦见虫子是什么意思| 肝病有什么反应| 型式检验是什么意思| 什么是主动脉夹层| 树脂是什么材料| 麻烦别人说什么礼貌用语| 什么是六合| 今年是什么年庚| 复方血栓通片功效作用治疗什么病| 咖啡拿铁是什么意思| 补体c1q偏低说明什么| 鞠婧祎什么学历| 大红袍适合什么季节喝| 什么叫糖化血红蛋白| 夜尿次数多是什么原因| 雄性激素过高是什么原因| 沉香是什么东西| 唐僧取经取的是什么经| 甲状腺结节看什么科室最好| 义乌有什么大学| 一夫一妻制产生于什么时期| 麦冬和什么相克| 保持器是什么| 石女是什么意思| 女人大把掉头发是什么原因| 老舍原名什么| 女人来月经吃什么好| 鄂尔多斯是什么意思| 蛋白质阴性是什么意思| 左脚大拇指麻木是什么原因| 六月26日是什么日子| 二氧化硅是什么氧化物| 吃苹果是什么意思| 湿疹为什么要查肝功能| 蛇和什么属相最配| 无犯罪证明需要什么材料| 和珅是什么官| 妇炎康片主要治什么妇科病| 老年人血压忽高忽低是什么原因| 身份证拍照穿什么衣服| 缺维生素b有什么症状| 胆酷醇高有什么危害| 什么叫便溏| 脑梗前兆是什么症状| 很黄很暴力是什么意思| 静字五行属什么| 小孩不说话什么原因| 肝胆胰脾挂什么科| 月经来前有什么征兆| 龟裂是什么意思| sm是什么意思啊| ptp是什么意思| 下联是什么| 仗剑走天涯什么意思| 眼神迷离什么意思| 发霉的衣服用什么洗能洗掉| 无患子为什么叫鬼见愁| 牙齿浮起来是什么原因| 乳腺结节有什么危害| 什么是肺腺癌| 什么是速率| 色是什么结构| k是什么| 头晕挂什么科室| 心肌缺血挂什么科| 脑缺血吃什么药最好| 死库水什么意思| 什么情况下需要做喉镜检查| 吃什么健脾胃| 挫是什么意思| 睡觉天天做梦是什么原因| 天蝎座和什么座最配对| 蟑螂为什么叫小强| 什么不能带上高铁| 德行是什么意思| 做美甲师容易得什么病| 胃胀吃什么药最有效| 头抖是什么原因| 不屑一顾的意思是什么| 火牛命五行缺什么| 社保跟医保有什么区别| 金牛座前面是什么星座| 男人是什么| 什么是直流电| 头发不长是什么原因| 4个火念什么| 后背有痣代表什么意思| 前列腺肥大是什么症状| 四大皆空是什么生肖| 这是什么鱼| cn什么意思| 女人梦见老虎是什么预兆| 阳虚吃什么中药| 小寒节气的含义是什么| 变异是什么意思| 脱脂乳粉是什么| 一个既一个旦念什么| 姓陆的女孩取什么名字好| 水瓶座与什么星座最配| 阴盛阳衰什么意思| 登高望远是什么生肖| 手指甲变薄是什么原因| 梦到丧尸是什么预兆| 甲减不能吃什么| 乳腺增生什么意思| 蔓越莓是什么水果| 总是想吐是什么原因| 什么是原生家庭| 梦见龙是什么预兆| 查心梗应该做什么检查| 为人是什么意思| blossom是什么意思| sany是什么牌子| 暗里着迷什么意思| 心脏跳动过快吃什么药| 弯男是什么意思| 双绿生肖是什么生肖| 病毒长什么样子| 小孩尖叫是什么原因| 验血挂什么科| 晚八点是什么时辰| 做脑ct对人体有什么危害| 6.20是什么星座| 军五行属什么| 百度Jump to content

经常咳嗽是什么病

From Wikipedia, the free encyclopedia
百度 习近平总书记为这一思想的创立,发挥了决定性作用,作出了历史性贡献。

A strangelet (pronounced /?stre?nd?.l?t/) is a hypothetical particle consisting of a bound state of roughly equal numbers of up, down, and strange quarks. An equivalent description is that a strangelet is a small fragment of strange matter, small enough to be considered a particle. The size of an object composed of strange matter could, theoretically, range from a few femtometers across (with the mass of a light nucleus) to arbitrarily large. Once the size becomes macroscopic (on the order of metres across), such an object is usually called a strange star. The term "strangelet" originates with Edward Farhi and Robert Jaffe in 1984. It has been theorized that strangelets can convert matter to strange matter on contact.[1] Strangelets have also been suggested as a dark matter candidate.[2]

Theoretical possibility

[edit]

Strange matter hypothesis

[edit]

The known particles with strange quarks are unstable. Because the strange quark is heavier than the up and down quarks, it can spontaneously decay, via the weak interaction, into an up quark. Consequently, particles containing strange quarks, such as the lambda particle, always lose their strangeness, by decaying into lighter particles containing only up and down quarks.

However, condensed states with a larger number of quarks might not suffer from this instability. That possible stability against decay is the "strange matter hypothesis", proposed separately by Arnold Bodmer[3] and Edward Witten.[4] According to this hypothesis, when a large enough number of quarks are concentrated together, the lowest energy state is one which has roughly equal numbers of up, down, and strange quarks, namely a strangelet. This stability would occur because of the Pauli exclusion principle; having three types of quarks, rather than two as in normal nuclear matter, allows more quarks to be placed in lower energy levels.

Relationship with nuclei

[edit]

A nucleus is a collection of a number of up and down quarks (in some nuclei a fairly large number), confined into triplets (neutrons and protons). According to the strange matter hypothesis, strangelets are more stable than nuclei, so nuclei are expected to decay into strangelets. But this process may be extremely slow because there is a large energy barrier to overcome: as the weak interaction starts making a nucleus into a strangelet, the first few strange quarks form strange baryons, such as the Lambda, which are heavy. Only if many conversions occur almost simultaneously will the number of strange quarks reach the critical proportion required to achieve a lower energy state. This is very unlikely to happen, so even if the strange matter hypothesis were correct, nuclei would never be seen to decay to strangelets because their lifetime would be longer than the age of the universe.[5]

Size

[edit]

The stability of strangelets depends on their size, because of

  • surface tension at the interface between quark matter and vacuum (which affects small strangelets more than big ones). The surface tension of strange matter is unknown. If it is smaller than a critical value (a few MeV per square femtometer[6]) then large strangelets are unstable and will tend to fission into smaller strangelets (strange stars would still be stabilized by gravity). If it is larger than the critical value, then strangelets become more stable as they get bigger.
  • charge screening, which allows small strangelets to be charged, with a neutralizing cloud of electrons/positrons around them, but requires large strangelets, like any large piece of matter, to be electrically neutral in their interior. The charge screening distance tends to be of the order of a few femtometers, so only the outer few femtometers of a strangelet can carry charge.[7]

Natural or artificial occurrence

[edit]

Although nuclei do not decay to strangelets, there are other ways to create strangelets, so if the strange matter hypothesis is correct there should be strangelets in the universe. There are at least three ways they might be created in nature:

  • Cosmogonically, i.e. in the early universe when the QCD confinement phase transition occurred. It is possible that strangelets were created along with the neutrons and protons that form ordinary matter.
  • High-energy processes. The universe is full of very high-energy particles (cosmic rays). It is possible that when these collide with each other or with neutron stars they may provide enough energy to overcome the energy barrier and create strangelets from nuclear matter. Some identified exotic cosmic ray events, such as "Price's event"—i.e., those with very low charge-to-mass ratios (as the s-quark itself possesses charge commensurate with the more-familiar d-quark, but is much more massive)—could have already registered strangelets.[8][9]
  • Cosmic ray impacts. In addition to head-on collisions of cosmic rays, ultra high energy cosmic rays impacting on Earth's atmosphere may create strangelets.

These scenarios offer possibilities for observing strangelets. If strangelets can be produced in high-energy collisions, then they might be produced by heavy-ion colliders. Similarly, if there are strangelets flying around the universe, then occasionally a strangelet should hit Earth, where it may appear as an exotic type of cosmic ray; alternatively, a stable strangelet could end up incorporated into the bulk of the Earth's matter, acquiring an electron shell proportional to its charge and hence appearing as an anomalously heavy isotope of the appropriate element—though searches for such anomalous "isotopes" have, so far, been unsuccessful.[10]

Accelerator production

[edit]

At heavy ion accelerators like the Relativistic Heavy Ion Collider (RHIC), nuclei are collided at relativistic speeds, creating strange and antistrange quarks that could conceivably lead to strangelet production. The experimental signature of a strangelet would be its very high ratio of mass to charge, which would cause its trajectory in a magnetic field to be very nearly, but not quite, straight. The STAR collaboration has searched for strangelets produced at the RHIC,[11] but none were found. The Large Hadron Collider (LHC) is even less likely to produce strangelets,[12] but searches are planned[13] for the LHC ALICE detector.

Space-based detection

[edit]

The Alpha Magnetic Spectrometer (AMS), an instrument that is mounted on the International Space Station, could detect strangelets.[14]

Possible seismic detection

[edit]

In May 2002, a group of researchers at Southern Methodist University reported the possibility that strangelets may have been responsible for seismic events recorded on October 22 and November 24 in 1993.[15] The authors later retracted their claim, after finding that the clock of one of the seismic stations had a large error during the relevant period.[16]

It has been suggested that the International Monitoring System be set up to verify the Comprehensive Nuclear Test Ban Treaty (CTBT) after entry into force may be useful as a sort of "strangelet observatory" using the entire Earth as its detector. The IMS will be designed to detect anomalous seismic disturbances down to 1 kiloton of TNT (4.2 TJ) energy release or less, and could be able to track strangelets passing through Earth in real time if properly exploited.

Impacts on Solar System bodies

[edit]

It has been suggested that strangelets of subplanetary (i.e. heavy meteorite) mass would puncture planets and other Solar System objects, leading to impact craters which show characteristic features.[17]

Potential propagation

[edit]

If the strange matter hypothesis is correct, and if a stable negatively-charged strangelet with a surface tension larger than the aforementioned critical value exists, then a larger strangelet would be more stable than a smaller one. One speculation that has resulted from the idea is that a strangelet coming into contact with a lump of ordinary matter could over time convert the ordinary matter to strange matter.[18][19]

This is not a concern for strangelets in cosmic rays because they are produced far from Earth and have had time to decay to their ground state, which is predicted by most models to be positively charged, so they are electrostatically repelled by nuclei, and would rarely merge with them.[20][21] On the other hand, high-energy collisions could produce negatively charged strangelet states, which could live long enough to interact with the nuclei of ordinary matter.[22]

The danger of catalyzed conversion by strangelets produced in heavy-ion colliders has received some media attention,[23][24] and concerns of this type were raised[18][25] at the commencement of the RHIC experiment at Brookhaven, which could potentially have created strangelets. A detailed analysis[19] concluded that the RHIC collisions were comparable to ones which naturally occur as cosmic rays traverse the Solar System, so we would already have seen such a disaster if it were possible. RHIC has been operating since 2000 without incident. Similar concerns have been raised about the operation of the LHC at CERN[26] but such fears are dismissed as far-fetched by scientists.[26][27][28]

In the case of a neutron star, the conversion scenario may be more plausible. A neutron star is in a sense a giant nucleus (20 km across), held together by gravity, but it is electrically neutral and would not electrostatically repel strangelets. If a strangelet hit a neutron star, it might catalyze quarks near its surface to form into more strange matter, potentially continuing until the entire star became a strange star.[29]

Debate about the strange matter hypothesis

[edit]

The strange matter hypothesis remains unproven. No direct search for strangelets in cosmic rays or particle accelerators has yet confirmed a strangelet. If any of the objects such as neutron stars could be shown to have a surface made of strange matter, this would indicate that strange matter is stable at zero pressure, which would vindicate the strange matter hypothesis. However, there is no strong evidence for strange matter surfaces on neutron stars.

Another argument against the hypothesis is that if it were true, essentially all neutron stars should be made of strange matter, and otherwise none should be.[30] Even if there were only a few strange stars initially, violent events such as collisions would soon create many fragments of strange matter flying around the universe. Because collision with a single strangelet would convert a neutron star to strange matter, all but a few of the most recently formed neutron stars should by now have already been converted to strange matter.

This argument is still debated,[31][32][33][34] but if it is correct then showing that one old neutron star has a conventional nuclear matter crust would disprove the strange matter hypothesis.

Because of its importance for the strange matter hypothesis, there is an ongoing effort to determine whether the surfaces of neutron stars are made of strange matter or nuclear matter. The evidence currently favors nuclear matter. This comes from the phenomenology of X-ray bursts, which is well explained in terms of a nuclear matter crust,[35] and from measurement of seismic vibrations in magnetars.[36]

In fiction

[edit]
  • An episode of Odyssey 5 featured an attempt to destroy the planet by intentionally creating negatively charged strangelets in a particle accelerator.[37]
  • The BBC docudrama End Day features a scenario where a particle accelerator in New York City explodes, creating a strangelet and starting a catastrophic chain reaction which destroys Earth.
  • The story A Matter most Strange in the collection Indistinguishable from Magic by Robert L. Forward deals with the making of a strangelet in a particle accelerator.
  • Impact, published in 2010 and written by Douglas Preston, deals with an alien machine that creates strangelets. The machine's strangelets impact the Earth and Moon and pass through.
  • The novel Phobos, published in 2011 and written by Steve Alten as the third and final part of his Domain trilogy, presents a fictional story where strangelets are unintentionally created at the LHC and escape from it to destroy the Earth.
  • In the 1992 black-comedy novel Humans by Donald E. Westlake, an irritated God sends an angel to Earth to bring about Armageddon by means of using a strangelet created in a particle accelerator to convert the Earth into a quark star.
  • In the 2010 film Quantum Apocalypse, a strangelet approaches the Earth from space.
  • In the novel The Quantum Thief by Hannu Rajaniemi and the rest of the trilogy, strangelets are mostly used as weapons, but during an early project to terraform Mars, one was used to convert Phobos into an additional "sun".

See also

[edit]

Further reading

[edit]
  • Holden, Joshua (May 17, 1998). "The Story of Strangelets". Rutgers. Archived from the original on January 7, 2010. Retrieved April 1, 2010.
  • Fridolin Weber (2005). "Strange Quark Matter and Compact Stars". Progress in Particle and Nuclear Physics. 54 (1): 193–288. arXiv:astro-ph/0407155. Bibcode:2005PrPNP..54..193W. doi:10.1016/j.ppnp.2004.07.001. S2CID 15002134.
  • Jes Madsen (1999). "Physics and astrophysics of strange quark matter". Hadrons in Dense Matter and Hadrosynthesis. Lecture Notes in Physics. Vol. 516. pp. 162–203. arXiv:astro-ph/9809032. doi:10.1007/BFb0107314. ISBN 978-3-540-65209-0. S2CID 16566509.

References

[edit]
  1. ^ Farhi, Edward; Jaffe, R. L. (1984). "Strange matter". Physical Review D. 30 (11): 2379–2390. Bibcode:1984PhRvD..30.2379F. doi:10.1103/PhysRevD.30.2379.
  2. ^ Witten, Edward (1984). "Cosmic separation of phases". Physical Review D. 30 (2): 272–285. Bibcode:1984PhRvD..30..272W. doi:10.1103/PhysRevD.30.272.
  3. ^ Bodmer, A.R. (15 September 1971). "Collapsed Nuclei". Physical Review D. 4 (6): 1601–1606. Bibcode:1971PhRvD...4.1601B. doi:10.1103/PhysRevD.4.1601.
  4. ^ Witten, Edward (15 July 1984). "Cosmic separation of phases". Physical Review D. 30 (2): 272–285. Bibcode:1984PhRvD..30..272W. doi:10.1103/PhysRevD.30.272.
  5. ^ Norbeck, E.; Onel, Y. (2011). "The strangelet saga". Journal of Physics: Conference Series. 316 (1): 012034–2. Bibcode:2011JPhCS.316a2034N. doi:10.1088/1742-6596/316/1/012034.
  6. ^ Alford, Mark G.; Rajagopal, Krishna; Reddy, Sanjay; Steiner, Andrew W. (2006). "Stability of strange star crusts and strangelets". Physical Review D. 73 (11): 114016. arXiv:hep-ph/0604134. Bibcode:2006PhRvD..73k4016A. doi:10.1103/PhysRevD.73.114016. S2CID 35951483.
  7. ^ Heiselberg, H. (1993). "Screening in quark droplets". Physical Review D. 48 (3): 1418–1423. Bibcode:1993PhRvD..48.1418H. doi:10.1103/PhysRevD.48.1418. PMID 10016374.
  8. ^ Banerjee, Shibaji; Ghosh, Sanjay K.; Raha, Sibaji; Syam, Debapriyo (2000). "Can Cosmic Strangelets Reach the Earth?". Physical Review Letters. 85 (7): 1384–1387. arXiv:hep-ph/0006286. Bibcode:2000PhRvL..85.1384B. doi:10.1103/PhysRevLett.85.1384. PMID 10970510. S2CID 27542402.
  9. ^ Rybczynski, M.; Wlodarczyk, Z.; Wilk, G. (2002). "Can cosmic rays provide sign of strangelets?". Acta Physica Polonia B. 33 (1): 277–296. arXiv:hep-ph/0109225. Bibcode:2002AcPPB..33..277R.
  10. ^ Lu, Z.-T.; Holt, R. J.; Mueller, P.; O'Connor, T. P.; Schiffer, J. P.; Wang, L.-B. (May 2005). "Searches for Stable Strangelets in Ordinary Matter: Overview and a Recent Example". Nuclear Physics A. 754: 361–368. arXiv:nucl-ex/0402015. Bibcode:2005NuPhA.754..361L. doi:10.1016/j.nuclphysa.2005.01.038.
  11. ^ Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S. -L.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; et al. (2007). "Strangelet search in Au+Au collisions at sNN=200 GeV". Physical Review C. 76 (1): 011901. arXiv:nucl-ex/0511047. Bibcode:2007PhRvC..76a1901A. doi:10.1103/PhysRevC.76.011901. S2CID 119498771.
  12. ^ Ellis, John; Giudice, Gian; Mangano, Michelangelo; Tkachev, Igor; Wiedemann, Urs; LHC Safety Assessment Group (2008). "Review of the safety of LHC collisions". Journal of Physics G: Nuclear and Particle Physics. 35 (11). 115004 (18pp). arXiv:0806.3414. Bibcode:2008JPhG...35k5004E. doi:10.1088/0954-3899/35/11/115004. S2CID 53370175. CERN record Archived 2025-08-07 at the Wayback Machine.
  13. ^ Sadovsky, S. A.; Kharlov, Yu. V.; Angelis, A. L. S.; G?adysz-Dziadu?, E.; Korotkikh, V. L.; Mavromanolakis, G.; Panagiotou, A. D. (2004). "Model for describing the production of Centauro events and strangelets in heavy-ion collisions". Physics of Atomic Nuclei. 67 (2): 396–405. arXiv:nucl-th/0301003. Bibcode:2004PAN....67..396S. doi:10.1134/1.1648929. S2CID 117706766.
  14. ^ Sandweiss, J. (2004). "Overview of strangelet searches and Alpha Magnetic Spectrometer: When will we stop searching?". Journal of Physics G: Nuclear and Particle Physics. 30 (1): S51 – S59. Bibcode:2004JPhG...30S..51S. doi:10.1088/0954-3899/30/1/004.
  15. ^ Anderson, D. P.; Rajagopal, Krishna; Reddy, Sanjay; Steiner, Andrew (2003). "Unexplained Sets of Seismographic Station Reports and a Set Consistent with a Quark Nugget Passage". The Bulletin of the Seismological Society of America. 93 (6): 2363–2374. arXiv:astro-ph/0205089. Bibcode:2003BuSSA..93.2363A. doi:10.1785/0120020138. S2CID 43388747.
  16. ^ Herrin, Eugene T.; Rosenbaum, Doris C.; Teplitz, Vigdor L.; Steiner, Andrew (2006). "Seismic search for strange quark nuggets". Physical Review D. 73 (4): 043511. arXiv:astro-ph/0505584. Bibcode:2006PhRvD..73d3511H. doi:10.1103/PhysRevD.73.043511. S2CID 119368573.
  17. ^ Rafelski, Johann; Labun, Lance; Birrell, Jeremiah; Steiner, Andrew (2013). "Compact Ultra Dense Matter Impactors". Physical Review Letters. 110 (11): 111102. arXiv:1104.4572. Bibcode:2011arXiv1104.4572R. doi:10.1103/PhysRevLett.110.111102. PMID 25166521. S2CID 28532909. Archived from the original on 2025-08-07. Retrieved 2025-08-07.
  18. ^ a b Dar, A.; De Rujula, A.; Heinz, Ulrich; Steiner, Andrew (1999). "Will relativistic heavy-ion colliders destroy our planet?". Physics Letters B. 470 (1–4): 142–148. arXiv:hep-ph/9910471. Bibcode:1999PhLB..470..142D. doi:10.1016/S0370-2693(99)01307-6. S2CID 17837332.
  19. ^ a b Jaffe, R. L.; Busza, W.; Wilczek, F.; Sandweiss, J. (2000). "Review of speculative disaster scenarios at RHIC". Reviews of Modern Physics. 72 (4): 1125–1140. arXiv:hep-ph/9910333. Bibcode:2000RvMP...72.1125J. doi:10.1103/RevModPhys.72.1125. S2CID 444580.
  20. ^ Madsen, Jes; Rajagopal, Krishna; Reddy, Sanjay; Steiner, Andrew (2000). "Intermediate Mass Strangelets are Positively Charged". Physical Review Letters. 85 (22): 4687–4690. arXiv:hep-ph/0008217. Bibcode:2000PhRvL..85.4687M. doi:10.1103/PhysRevLett.85.4687. PMID 11082627. S2CID 44845761.
  21. ^ Madsen, Jes; Rajagopal, Krishna; Reddy, Sanjay; Steiner, Andrew (2006). "Strangelets in Cosmic Rays". arXiv:astro-ph/0612784.
  22. ^ Schaffner-Bielich, Jürgen; Greiner, Carsten; Diener, Alexander; St?cker, Horst (1997). "Detectability of strange matter in heavy ion experiments". Physical Review C. 55 (6): 3038–3046. arXiv:nucl-th/9611052. Bibcode:1997PhRvC..55.3038S. doi:10.1103/PhysRevC.55.3038. S2CID 12781374.
  23. ^ Robert Matthews (28 August 1999). "A Black Hole Ate My Planet". New Scientist. Archived from the original on 22 March 2019. Retrieved 25 April 2019.
  24. ^ Horizon: End Days, an episode of the BBC television series Horizon
  25. ^ Wagner, Walter L. (1999). "Black Holes at Brookhaven?". Scientific American. 281 (1): 8. JSTOR 26058304.
  26. ^ a b Dennis Overbye (29 March 2008). "Asking a Judge to Save the World, and Maybe a Whole Lot More". New York Times. Archived from the original on 28 December 2017. Retrieved 23 February 2017.
  27. ^ "Safety at the LHC". Archived from the original on 2025-08-07. Retrieved 2025-08-07.
  28. ^ J. Blaizot et al., "Study of Potentially Dangerous Events During Heavy-Ion Collisions at the LHC", CERN library record Archived 2025-08-07 at the Wayback Machine CERN Yellow Reports Server (PDF)
  29. ^ Alcock, Charles; Farhi, Edward & Olinto, Angela (1986). "Strange stars". Astrophysical Journal. 310: 261. Bibcode:1986ApJ...310..261A. doi:10.1086/164679.
  30. ^ Caldwell, R.R.; Friedman, John L. (1991). "Evidence against a strange ground state for baryons". Physics Letters B. 264 (1–2): 143–148. Bibcode:1991PhLB..264..143C. doi:10.1016/0370-2693(91)90718-6.
  31. ^ Alford, Mark G.; Rajagopal, Krishna; Reddy, Sanjay; Steiner, Andrew (2003). "Strangelets as Cosmic Rays beyond the Greisen-Zatsepin-Kuzmin Cutoff". Physical Review Letters. 90 (12): 121102. arXiv:astro-ph/0211597. Bibcode:2003PhRvL..90l1102M. doi:10.1103/PhysRevLett.90.121102. PMID 12688863. S2CID 118913495.
  32. ^ Balberg, Shmuel; Rajagopal, Krishna; Reddy, Sanjay; Steiner, Andrew (2004). "Comment on Strangelets as Cosmic Rays beyond the Greisen-Zatsepin-Kuzmin Cutoff". Physical Review Letters. 92 (11): 119001. arXiv:astro-ph/0403503. Bibcode:2004PhRvL..92k9001B. doi:10.1103/PhysRevLett.92.119001. PMID 15089181. S2CID 35971928.
  33. ^ Madsen, Jes; Rajagopal, Krishna; Reddy, Sanjay; Steiner, Andrew (2004). "Madsen Replies". Physical Review Letters. 92 (11): 119002. arXiv:astro-ph/0403515. Bibcode:2004PhRvL..92k9002M. doi:10.1103/PhysRevLett.92.119002. S2CID 26518446.
  34. ^ Madsen, Jes (2005). "Strangelet propagation and cosmic ray flux". Physical Review D. 71 (1): 014026. arXiv:astro-ph/0411538. Bibcode:2005PhRvD..71a4026M. doi:10.1103/PhysRevD.71.014026. S2CID 119485839.
  35. ^ Heger, Alexander; Cumming, Andrew; Galloway, Duncan K.; Woosley, Stanford E. (2007). "Models of type I X-ray bursts from GS 1826-24: A probe of rp-process hydrogen burning". The Astrophysical Journal. 671 (2): L141. arXiv:0711.1195. Bibcode:2007ApJ...671L.141H. doi:10.1086/525522. S2CID 14986572.
  36. ^ Watts, Anna L.; Reddy, Sanjay (2007). "Magnetar oscillations pose challenges for strange stars". Monthly Notices of the Royal Astronomical Society. 379 (1): L63. arXiv:astro-ph/0609364. Bibcode:2007MNRAS.379L..63W. doi:10.1111/j.1745-3933.2007.00336.x. S2CID 14055493.
  37. ^ Odyssey 5: Trouble with Harry Archived 2025-08-07 at the Wayback Machine, an episode of the Canadian science fiction television series Odyssey 5 by Manny Coto (2002)
[edit]
印枭是什么意思 躺尸是什么意思 藏红花有什么作用和功效 jb什么意思 始于初见止于终老是什么意思
死精吃什么能调理成活精 不言而喻的喻是什么意思 圣罗兰为什么叫杨树林 什么什么深长 今年流行什么发型
糖耐什么时候做 鼻窦炎用什么药好 普洱属于什么茶 鼻子发干是什么原因造成的 夺目的什么
排卵期出血吃什么药 必承其重上一句是什么 一个草字头一个氏念什么 三星堆遗址在什么地方 厂与什么有关
什么眼镜框最轻最舒服qingzhougame.com 50岁属什么hcv9jop2ns4r.cn 莲花和荷花有什么区别onlinewuye.com 红参适合什么人吃hcv9jop6ns5r.cn 扫把星是什么生肖hebeidezhi.com
石榴叶子泡水喝有什么功效hcv8jop9ns9r.cn 月经太多是什么原因hcv7jop6ns1r.cn 体寒的人吃什么食物好hcv8jop9ns8r.cn 生日送什么花合适hcv9jop3ns6r.cn 若无其事的若是什么意思shenchushe.com
圆舞曲是什么意思hcv7jop6ns0r.cn 鼠目寸光是什么意思hcv9jop1ns1r.cn 网调是什么意思hcv7jop7ns3r.cn 贴切是什么意思hcv9jop4ns7r.cn 乳腺瘤是什么引起的imcecn.com
什么是切片hcv9jop4ns3r.cn 大姨夫是什么beikeqingting.com 嗝什么意思hcv8jop1ns0r.cn tea什么意思hcv8jop8ns1r.cn 什么不迫hcv9jop4ns7r.cn
百度