bmp是什么意思| 交警支队长是什么级别| 走之旁与什么有关| 肛门是什么意思| 什么水果去湿气效果最好| 亵渎什么意思| 嘴酸是什么原因| 鼻窦炎长什么样图片| 蔗糖脂肪酸酯是什么| ab型和b型生的孩子是什么血型| 多囊不能吃什么食物| 嘴唇发紫黑是什么原因| 痈是什么意思| 上师是什么意思| 早博是什么意思| 茭白不能和什么一起吃| vcr是什么| 夏天水肿的原因是什么| 纯粹是什么意思| 痈肿疮疖是什么意思| 广东话扑街是什么意思| 赛诺菲是什么药| 总是想吐是什么原因| 为什么会长疤痕疙瘩| 逍遥丸治什么| 为什么学习不好| 小脑萎缩吃什么药好| 什么是消融手术| 痛风是什么病| 什么叫市级以上医院| 戒指上的s925是什么意思| 甲鱼吃什么| 盘尼西林是什么药| 办护照需要带什么| 营养师是干什么的| 命里缺水取什么名字好| 正切是什么| 投诉与举报有什么区别| 什么是马克杯| 为什么会长口腔溃疡| 医学美容技术学什么| 阴人是什么意思| 说什么道什么| 导览是什么意思| 颈部有肿块看什么科室| 猥琐什么意思| 经常干呕是什么原因| 孕妇吃海参对胎儿有什么好处| 钊字五行属什么| 尿酸高要吃什么药| 湿气重会有什么症状| 草莓像什么| 什么是潜规则| 家里出现蛇是什么征兆| 四面楚歌是什么生肖| 女性胃炎有什么症状| 什么人不能爬泰山| 肝囊性灶是什么意思| 胡巴是什么| 尿常规红细胞高是什么原因| pwp是什么意思| 加味逍遥丸和逍遥丸有什么区别| 窦性心律不齐是什么原因引起的| 1975年属兔五行属什么| 老说梦话是什么原因| 马杀鸡是什么意思| 知了猴什么时候出来| 斯德哥尔摩综合症是什么意思| 平平仄仄是什么意思| 下体痒是什么原因| 女人大腿粗代表什么| 心脏除颤是什么意思| 手麻是什么原因| ih医学上是什么意思| 宣肺是什么意思| 玳瑁色是什么颜色| 伤口发炎用什么药| 肝的反射区在什么部位| 稀字五行属什么| 95年属什么| 梦见捡鸡蛋是什么意思| 喝什么能解酒| 梦见鳄鱼是什么预兆| 平肝什么意思| 皮癣是什么原因引起的| 家政公司是做什么的| 狮子长什么样| 糖尿病人不能吃什么水果| 孔雀为什么会开屏| 做亲子鉴定需要什么材料| 1994年属狗的是什么命| 窦房结是什么意思| 心脏属于什么组织| 卖点是什么意思| 抽筋是什么原因| 十玉九裂是什么意思| 珍珠婚是什么意思| ltp什么意思| 血常规查什么| 85年是什么命| 身份证什么时候开始有的| 立flag什么意思| 为什么会得抑郁症| 氡气是什么| 黑标是什么意思| 没有鱼鳞的鱼是什么鱼| 治疗带状疱疹用什么药最好| 石女是什么意思啊| mua什么意思| 若干是什么意思| 生理反应是什么意思| 男人阴虚吃什么药最好| ab型血可以给什么血型输血| 眉毛少是什么原因| 榴莲什么季节成熟| 涌泉穴在什么地方| xxoo什么意思| 三百多分能上什么大学| 月经周期是什么意思| 杨玉环属什么生肖| 人湿气重有什么症状| 粉色是什么颜色| 女生有喉结是什么原因| 与虎谋皮是什么意思| molly是什么意思| 天长地久是什么生肖| 为什么黄瓜是绿色的却叫黄瓜| 内痔有什么症状与感觉| 眉心发红是什么原因| 乾隆为什么长寿| 黄鼠狼喜欢吃什么东西| autumn什么意思| 肾气虚吃什么中成药| 扁桃体有什么用| 七月五日是什么星座| 肠腔积气是什么原因| 耻骨高是什么原因| 广义货币m2是什么意思| 早泄吃什么药| 物欲横流是什么意思| 一个米一个更念什么| 明了是什么意思| 市公安局局长什么级别| 减肥吃什么药好| 商量是什么意思| 婴儿吓着了有什么症状| balenciaga是什么牌子| 三醋酯纤维是什么面料| 什么药降肌酐最有效| 什么疾什么快| 为什么说黑鱼是鬼| 羊可以加什么偏旁| 776是什么意思| 勤去掉力念什么| vg是什么意思| 刘备代表什么生肖| 什么物流寄大件便宜| 石男是什么意思| 熟地是什么| 最后一个出场叫什么| 1月21是什么星座| 人中起痘痘是什么原因| 白细胞低要吃什么| 琀是什么意思| 尿道痒痒是什么原因| 怀孕做梦梦到蛇是什么意思| 划扣是什么意思| 乌龟和甲鱼有什么区别| 前列腺是什么器官| 淋巴排毒是什么意思| 怀不上孕做什么检查| 三月份是什么星座的| 增强抵抗力吃什么| 月经几个月不来是什么原因| 属虎是什么命| 五月初六是什么星座| 微喇裤配什么鞋子好看| 什么鸡蛋营养价值最高| 呕心沥血是什么意思| 牛奶不能和什么一起吃| 梦见河水是什么意思| dikang是什么药| 杀生电影讲的什么意思| 摸胸是什么感觉| 什么是涤纶面料| 不想吃饭没胃口是什么原因| 舌苔黄厚腻是什么原因| 蚂蚱吃什么食物| 肛裂出血用什么药| ins是什么社交软件| 浑身酸疼是什么原因| 小朋友手指脱皮是什么原因| 什么是尿频| 诸法无我是什么意思| 怀孕了吃什么药能流掉| 什么牌子的手机好| 落红是什么意思| 喝什么缓解痛经最有效| ood是什么意思| 山竹有什么营养| 墨鱼干和什么煲汤最好| 便秘灌肠用什么水| 男人前列腺在什么位置| 开店需要什么手续| 梦见给别人钱是什么意思| 爱好是什么意思| 晒背有什么好处| 火山飘雪是什么菜| 恩惠什么意思| 阴阳怪气什么意思| 梦到车坏了是什么意思| 仓鼠吃什么| 考试前吃什么好| 有心无力是什么意思| 骨质增生是什么症状| 成人发烧38度吃什么药| hpv52阳性有什么症状| 下巴两边长痘痘是什么原因| 最快的减肥运动是什么| 针灸是什么| 狗肉不能和什么食物一起吃| 贫血是什么意思| 助力车是什么车| 鬼子红药店里叫什么药| 96年出生的属什么| 什么立雪| 为什么眼睛会红| 孩子皮肤黑是什么原因| 吃什么利于排便| 口臭是什么病| 骨质增生的症状是什么| 向日葵什么时候采摘| 羊毛疔是什么病| 长期喝奶粉有什么好处| 贫血应该吃什么| 衬衫配什么裤子好看| 夹腿有什么坏处吗| 手机壳什么材质好| 左旋肉碱是什么| 坪效是什么意思| 什么叫糖化血红蛋白| 血热吃什么中成药| 璋字五行属什么| 猴子吃什么| 明天是什么| 执业药师什么时候考试| 慈是什么意思| 什么是情人| 吃什么变白| 小鱼的尾巴有什么作用| 一马平川是什么意思| 六月五行属什么| 羊肚菌有什么功效和作用| 十二月十八号是什么星座| 咖啡对身体有什么危害| 吃了阿莫西林不能吃什么| 片仔癀是什么| 盐酸安罗替尼胶囊主要治疗什么| 粉红粉红的什么| aqi是什么| 人属于什么界门纲目科属种| 整天放屁是什么原因| 枯草芽孢杆菌治什么病| 黄瓜与什么相克| 百度Jump to content

常州两场招聘会效果不佳 大学生对规划很迷茫

This is a good article. Click here for more information.
From Wikipedia, the free encyclopedia
百度 3月10日报道美媒称,阿梅莉娅·埃尔哈特的故事具有传奇性:她是第一位独自驾驶飞机飞越大西洋的女性,如果1937年她的飞机没有在太平洋上空失踪的话,她还可能是第一位驾驶飞机环游世界的女性。

Eukaryotes
Temporal range: StatherianPresent 1650–0 Ma
Scientific classification Edit this classification
Domain: Eukaryota
(Chatton, 1925) Whittaker & Margulis, 1978
Major subdivisions
Synonyms

The eukaryotes (/ju??k?rio?ts, -?ts/ yoo-KARR-ee-ohts, -??ts)[3] comprise the domain of Eukaryota or Eukarya, organisms whose cells have a membrane-bound nucleus. All animals, plants, fungi, seaweeds, and many unicellular organisms are eukaryotes. They constitute a major group of life forms alongside the two groups of prokaryotes: the Bacteria and the Archaea. Eukaryotes represent a small minority of the number of organisms, but given their generally much larger size, their collective global biomass is much larger than that of prokaryotes.

The eukaryotes emerged within the archaeal kingdom Promethearchaeati, near or inside the class "Candidatus Heimdallarchaeia".[4][5] This implies that there are only two domains of life, Bacteria and Archaea, with eukaryotes incorporated among the Archaea. Eukaryotes first emerged during the Paleoproterozoic, likely as flagellated cells. The leading evolutionary theory is they were created by symbiogenesis between an anaerobic Promethearchaeati archaean and an aerobic proteobacterium, which formed the mitochondria. A second episode of symbiogenesis with a cyanobacterium created the plants, with chloroplasts.

Eukaryotic cells contain membrane-bound organelles such as the nucleus, the endoplasmic reticulum, and the Golgi apparatus. Eukaryotes may be either unicellular or multicellular. In comparison, prokaryotes are typically unicellular. Unicellular eukaryotes are sometimes called protists. Eukaryotes can reproduce both asexually through mitosis and sexually through meiosis and gamete fusion (fertilization).

Etymology

[edit]

The word eukaryote is derived from the Greek words "eu" (ε?) meaning "true" or "good" and "karyon" (κ?ρυον) meaning "nut" or "kernel", referring to the nucleus of a cell.[6]

Diversity

[edit]

Eukaryotes are organisms that range from microscopic single cells, such as picozoans under 3 micrometres across,[7] to animals like the blue whale, weighing up to 190 tonnes and measuring up to 33.6 metres (110 ft) long,[8] or plants like the coast redwood, up to 120 metres (390 ft) tall.[9] Many eukaryotes are unicellular; the informal grouping called protists includes many of these, with some multicellular forms like the giant kelp up to 200 feet (61 m) long.[10] The multicellular eukaryotes include the animals, plants, and fungi, but again, these groups too contain many unicellular species.[11] Eukaryotic cells are typically much larger than those of prokaryotes—the bacteria and the archaea—having a volume of around 10,000 times greater.[12][13] Eukaryotes represent a small minority of the number of organisms, but, as many of them are much larger, their collective global biomass (468 gigatons) is far larger than that of prokaryotes (77 gigatons), with plants alone accounting for over 81% of the total biomass of Earth.[14]

The eukaryotes are a diverse lineage, consisting mainly of microscopic organisms.[15] Multicellularity in some form has evolved independently at least 25 times within the eukaryotes.[16][17] Complex multicellular organisms, not counting the aggregation of amoebae to form slime molds, have evolved within only six eukaryotic lineages: animals, symbiomycotan fungi, brown algae, red algae, green algae, and land plants.[18] Eukaryotes are grouped by genomic similarities, so that groups often lack visible shared characteristics.[15]

Distinguishing features

[edit]

Nucleus

[edit]

The defining feature of eukaryotes is that their cells have a well-defined, membrane-bound nucleus, distinguishing them from prokaryotes that lack such a structure. Eukaryotic cells have a variety of internal membrane-bound structures, called organelles, and a cytoskeleton which defines the cell's organization and shape. The nucleus stores the cell's DNA, which is divided into linear bundles called chromosomes;[19] these are separated into two matching sets by a microtubular spindle during nuclear division, in the distinctively eukaryotic process of mitosis.[20]

Biochemistry

[edit]

Eukaryotes differ from prokaryotes in multiple ways, with unique biochemical pathways such as sterane synthesis.[21] The eukaryotic signature proteins have no homology to proteins in other domains of life, but appear to be universal among eukaryotes. They include the proteins of the cytoskeleton, the complex transcription machinery, the membrane-sorting systems, the nuclear pore, and some enzymes in the biochemical pathways.[22]

Internal membranes

[edit]
Prokaryote, to same scale
Eukaryotic cell with endomembrane system
Eukaryotic cells are some 10,000 times larger than prokaryotic cells by volume, and contain membrane-bound organelles.

Eukaryote cells include a variety of membrane-bound structures, together forming the endomembrane system.[23] Simple compartments, called vesicles and vacuoles, can form by budding off other membranes. Many cells ingest food and other materials through a process of endocytosis, where the outer membrane invaginates and then pinches off to form a vesicle.[24] Some cell products can leave in a vesicle through exocytosis.[25]

The nucleus is surrounded by a double membrane known as the nuclear envelope, with nuclear pores that allow material to move in and out.[26] Various tube- and sheet-like extensions of the nuclear membrane form the endoplasmic reticulum, which is involved in protein transport and maturation. It includes the rough endoplasmic reticulum, covered in ribosomes which synthesize proteins; these enter the interior space or lumen. Subsequently, they generally enter vesicles, which bud off from the smooth endoplasmic reticulum.[27] In most eukaryotes, these protein-carrying vesicles are released and their contents further modified in stacks of flattened vesicles (cisternae), the Golgi apparatus.[28]

Vesicles may be specialized; for instance, lysosomes contain digestive enzymes that break down biomolecules in the cytoplasm.[29]

Mitochondria

[edit]
Mitochondria are essentially universal in the eukaryotes, and with their own DNA somewhat resemble prokaryotic cells.

Mitochondria are organelles in eukaryotic cells. The mitochondrion is commonly called "the powerhouse of the cell",[30] for its function providing energy by oxidising sugars or fats to produce the energy-storing molecule ATP.[31][32] Mitochondria have two surrounding membranes, each a phospholipid bilayer, the inner of which is folded into invaginations called cristae where aerobic respiration takes place.[33]

Mitochondria contain their own DNA, which has close structural similarities to bacterial DNA, from which it originated, and which encodes rRNA and tRNA genes that produce RNA which is closer in structure to bacterial RNA than to eukaryote RNA.[34]

Some eukaryotes, such as the metamonads Giardia and Trichomonas, and the amoebozoan Pelomyxa, appear to lack mitochondria, but all contain mitochondrion-derived organelles, like hydrogenosomes or mitosomes, having lost their mitochondria secondarily.[35] They obtain energy by enzymatic action in the cytoplasm.[36][35] It is thought that mitochondria developed from prokaryotic cells which became endosymbionts living inside eukaryotes.[37]

Plastids

[edit]
The most common type of plastid is the chloroplast, which contains chlorophyll and produces organic compounds by photosynthesis.

Plants and various groups of algae have plastids as well as mitochondria. Plastids, like mitochondria, have their own DNA and are developed from endosymbionts, in this case cyanobacteria. They usually take the form of chloroplasts which, like cyanobacteria, contain chlorophyll and produce organic compounds (such as glucose) through photosynthesis. Others are involved in storing food. Although plastids probably had a single origin, not all plastid-containing groups are closely related. Instead, some eukaryotes have obtained them from other eukaryotes through secondary endosymbiosis or ingestion.[38] The capture and sequestering of photosynthetic cells and chloroplasts, kleptoplasty, occurs in many types of modern eukaryotic organisms.[39][40]

Cytoskeletal structures

[edit]
The cytoskeleton. Actin filaments are shown in red, microtubules in green. (The nucleus is in blue.)

The cytoskeleton provides stiffening structure and points of attachment for motor structures that enable the cell to move, change shape, or transport materials. The motor structures are microfilaments of actin and actin-binding proteins. These include α-actinin, fimbrin, and filamin in submembranous cortical layers and bundles. Motor proteins of microtubules, dynein and kinesin, and myosin of actin filaments, make the network dynamic.[41][42]

Many eukaryotes have long slender motile cytoplasmic projections, called flagella, or multiple shorter structures called cilia. These organelles are variously involved in movement, feeding, and sensation. They are composed mainly of tubulin, and are entirely distinct from prokaryotic flagella. They are supported by a bundle of microtubules arising from a centriole, characteristically arranged as nine doublets surrounding two singlets. Flagella may have hairs (mastigonemes), as in many stramenopiles. Their interior is continuous with the cell's cytoplasm.[43][44]

Centrioles are often present, even in cells and groups that do not have flagella, but conifers and flowering plants have neither. They generally occur in groups that give rise to various microtubular roots. These form a primary component of the cytoskeleton, and are often assembled over the course of several cell divisions, with one flagellum retained from the parent and the other derived from it. Centrioles produce the spindle during nuclear division.[45]

Cell wall

[edit]

The cells of plants, algae, fungi and most chromalveolates, but not animals, are surrounded by a cell wall. This is a layer outside the cell membrane, providing the cell with structural support, protection, and a filtering mechanism. The cell wall also prevents over-expansion when water enters the cell.[46]

The major polysaccharides making up the primary cell wall of land plants are cellulose, hemicellulose, and pectin. The cellulose microfibrils are linked together with hemicellulose, embedded in a pectin matrix. The most common hemicellulose in the primary cell wall is xyloglucan.[47]

Sexual reproduction

[edit]
Sexual reproduction requires a life cycle that alternates between a haploid phase, with one copy of each chromosome in the cell, and a diploid phase, with two copies. In eukaryotes, haploid gametes are produced by meiosis; two gametes fuse to form a diploid zygote.

Eukaryotes have a life cycle that involves sexual reproduction, alternating between a haploid phase, where only one copy of each chromosome is present in each cell, and a diploid phase, with two copies of each chromosome in each cell. The diploid phase is formed by fusion of two haploid gametes, such as eggs and spermatozoa, to form a zygote; this may grow into a body, with its cells dividing by mitosis, and at some stage produce haploid gametes through meiosis, a division that reduces the number of chromosomes and creates genetic variability.[48] There is considerable variation in this pattern. Plants have both haploid and diploid multicellular phases.[49] Eukaryotes have lower metabolic rates and longer generation times than prokaryotes, because they are larger and therefore have a smaller surface area to volume ratio.[50]

The evolution of sexual reproduction may be a primordial characteristic of eukaryotes. Based on a phylogenetic analysis, Dacks and Roger have proposed that facultative sex was present in the group's common ancestor.[51] A core set of genes that function in meiosis is present in both Trichomonas vaginalis and Giardia intestinalis, two organisms previously thought to be asexual.[52][53] Since these two species are descendants of lineages that diverged early from the eukaryotic evolutionary tree, core meiotic genes, and hence sex, were likely present in the common ancestor of eukaryotes.[52][53] Species once thought to be asexual, such as Leishmania parasites, have a sexual cycle.[54] Amoebae, previously regarded as asexual, may be anciently sexual; while present-day asexual groups could have arisen recently.[55]

Evolution

[edit]

History of classification

[edit]

In antiquity, the two lineages of animals and plants were recognized by Aristotle and Theophrastus. The lineages were given the taxonomic rank of kingdom by Linnaeus in the 18th century. Though he included the fungi with plants with some reservations, it was later realized that they are quite distinct and warrant a separate kingdom.[56] The various single-cell eukaryotes were originally placed with plants or animals when they became known. In 1818, the German biologist Georg A. Goldfuss coined the word Protozoa to refer to organisms such as ciliates,[57] and this group was expanded until Ernst Haeckel made it a kingdom encompassing all single-celled eukaryotes, the Protista, in 1866.[58][59][60] The eukaryotes thus came to be seen as four kingdoms:

The protists were at that time thought to be "primitive forms", and thus an evolutionary grade, united by their primitive unicellular nature.[59] Understanding of the oldest branchings in the tree of life only developed substantially with DNA sequencing, leading to a system of domains rather than kingdoms as top level rank being put forward by Carl Woese, Otto Kandler, and Mark Wheelis in 1990, uniting all the eukaryote kingdoms in the domain "Eucarya", stating, however, that "'eukaryotes' will continue to be an acceptable common synonym".[1][61] In 1996, the evolutionary biologist Lynn Margulis proposed to replace kingdoms and domains with "inclusive" names to create a "symbiosis-based phylogeny", giving the description "Eukarya (symbiosis-derived nucleated organisms)".[2]

Phylogeny

[edit]
Tree of eukaryotes showing major subgroups and thumbnail diagrams of representative members of each group, based on 2023 phylogenomic reconstructions.[62]

By 2014, a rough consensus started to emerge from the phylogenomic studies of the previous two decades.[11][63] The majority of eukaryotes can be placed in one of two large clades dubbed Amorphea (similar in composition to the unikont hypothesis) and the Diphoda (formerly bikonts), which includes plants and most algal lineages. A third major grouping, the Excavata, has been abandoned as a formal group as it was found to be paraphyletic.[64] The proposed phylogeny below includes two groups of excavates (Discoba and Metamonada),[65] and incorporates the 2021 proposal that picozoans are close relatives of rhodophytes.[66] The Provora are a group of microbial predators discovered in 2022.[67] TSAR is a possible clade that would contain Telonemia and the SAR supergroup.[68][69][70]


Eukaryota
2200 mya

One view of the great kingdoms and their stem groups.[65][71][72][15] The Metamonada are hard to place, being sister possibly to Discoba or to Malawimonada[15] or being a paraphyletic group external to all other eukaryotes.[73]

Origin of eukaryotes

[edit]

In the theory of symbiogenesis, a merger of an archaean and an aerobic bacterium created the eukaryotes, with aerobic mitochondria; a second merger added chloroplasts, creating the green plants.[74]

The origin of the eukaryotic cell, or eukaryogenesis, is a milestone in the evolution of life, since eukaryotes include all complex cells and almost all multicellular organisms. The last eukaryotic common ancestor (LECA) is the hypothetical origin of all living eukaryotes,[75] and was most likely a biological population, not a single individual.[76] The LECA is believed to have been a protist with a nucleus, at least one centriole and flagellum, facultatively aerobic mitochondria, sex (meiosis and syngamy), a dormant cyst with a cell wall of chitin or cellulose, and peroxisomes.[77][78][79]

An endosymbiotic union between a motile anaerobic archaean and an aerobic alphaproteobacterium gave rise to the LECA and all eukaryotes with mitochondria. A second, much later endosymbiosis with a cyanobacterium gave rise to the ancestor of plants, with chloroplasts.[74]

The presence of eukaryotic biomarkers in archaea points towards an archaeal origin. The genomes of Promethearchaeati archaea have plenty of eukaryotic signature protein genes, which play a crucial role in the development of the cytoskeleton and complex cellular structures characteristic of eukaryotes. In 2022, cryo-electron tomography demonstrated that Promethearchaeati archaea have a complex actin-based cytoskeleton, providing the first direct visual evidence of the archaeal ancestry of eukaryotes.[80]

Fossils

[edit]

The timing of the origin of eukaryotes is hard to determine, but the discovery of Qingshania magnificia, the earliest multicellular eukaryote from North China which lived 1.635 billion years ago, suggests that the crown group eukaryotes originated from the late Paleoproterozoic (Statherian). The earliest unequivocal unicellular eukaryotes, Tappania plana, Shuiyousphaeridium macroreticulatum, Dictyosphaera macroreticulata, Germinosphaera alveolata, and Valeria lophostriata from North China, lived approximately 1.65 billion years ago.[81]

Some acritarchs are known from at least 1.65 billion years ago, and a fossil, Grypania, which may be an alga, is as much as 2.1 billion years old.[82][83] The "problematic"[84] fossil Diskagma has been found in paleosols 2.2 billion years old.[84]

Reconstruction of the problematic[84] Diskagma buttonii, a terrestrial fossil less than 1mm high, from rocks around 2.2 billion years old

The Neoarchean fossil Thuchomyces shares similarities with eukaryotes, specifically fungi. It especially resembles the problematic fossil Diskagma,[84] with hyphae and multiple differentiated layers.[85] However, it is over 600 million years older than all other possible eukaryotes, and many of its "eukaryote features" are not specific to the clade, meaning it is almost certainly a microbial mat instead.[86]

Structures proposed to represent "large colonial organisms" have been found in the black shales of the Palaeoproterozoic such as the Francevillian B Formation, in Gabon, dubbed the "Francevillian biota" which is dated at 2.1 billion years old.[87][88] However, the status of these structures as fossils is contested, with other authors suggesting that they might represent pseudofossils.[89] The oldest fossils that can unambiguously be assigned to eukaryotes are from the Ruyang Group of China, dating to approximately 1.8-1.6 billion years ago.[90] Fossils that are clearly related to modern groups start appearing an estimated 1.2 billion years ago, in the form of red algae, though recent work suggests the existence of fossilized filamentous algae in the Vindhya basin dating back perhaps to 1.6 to 1.7 billion years ago.[91]

The presence of steranes, eukaryotic-specific biomarkers, in Australian shales previously indicated that eukaryotes were present in these rocks dated at 2.7 billion years old,[21][92] but these Archaean biomarkers have been rebutted as later contaminants.[93] The oldest valid biomarker records are only around 800 million years old.[94] In contrast, a molecular clock analysis suggests the emergence of sterol biosynthesis as early as 2.3 billion years ago.[95] The nature of steranes as eukaryotic biomarkers is further complicated by the production of sterols by some bacteria.[96][97]

Whenever their origins, eukaryotes may not have become ecologically dominant until much later; a massive increase in the zinc composition of marine sediments 800 million years ago has been attributed to the rise of substantial populations of eukaryotes, which preferentially consume and incorporate zinc relative to prokaryotes, approximately a billion years after their origin (at the latest).[98]

See also

[edit]

References

[edit]
  1. ^ a b Woese CR, Kandler O, Wheelis ML (June 1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proceedings of the National Academy of Sciences of the United States of America. 87 (12): 4576–4579. Bibcode:1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC 54159. PMID 2112744.
  2. ^ a b Margulis L (6 February 1996). "Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life". Proceedings of the National Academy of Sciences. 93 (3): 1071–1076. Bibcode:1996PNAS...93.1071M. doi:10.1073/pnas.93.3.1071. PMC 40032. PMID 8577716.
  3. ^ "eukaryote". Merriam-Webster.com Dictionary. Merriam-Webster.
  4. ^ Zhang, Jiawei; Feng, Xiaoyuan; Li, Meng; Liu, Yang; Liu, Min; Li-Jun, Hou; Dong, Hong-Po (2025). "Deep origin of eukaryotes outside Heimdallarchaeia within Asgardarchaeota". Nature. 642 (8069): 990–998. Bibcode:2025Natur.642..990Z. doi:10.1038/s41586-025-08955-7. PMC 12222021. PMID 40335687.
  5. ^ Eme, Laura; Tamarit, Daniel; Caceres, Eva F.; Stairs, Courtney W.; De Anda, Valerie; et al. (29 June 2023). "Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes". Nature. 618 (7967): 992–999. Bibcode:2023Natur.618..992E. doi:10.1038/s41586-023-06186-2. ISSN 1476-4687. PMC 10307638. PMID 37316666.
  6. ^ "eukaryotic (adj.)". Online Etymology Dictionary. Retrieved 7 January 2025.
  7. ^ Seenivasan R, Sausen N, Medlin LK, Melkonian M (26 March 2013). "Picomonas judraskeda Gen. Et Sp. Nov.: The First Identified Member of the Picozoa Phylum Nov., a Widespread Group of Picoeukaryotes, Formerly Known as 'Picobiliphytes'". PLOS ONE. 8 (3): e59565. Bibcode:2013PLoSO...859565S. doi:10.1371/journal.pone.0059565. PMC 3608682. PMID 23555709.
  8. ^ Wood G (1983). The Guinness Book of Animal Facts and Feats. Enfield, Middlesex: Guinness World Records. ISBN 978-0-85112-235-9.
  9. ^ Earle CJ, ed. (2017). "Sequoia sempervirens". The Gymnosperm Database. Archived from the original on 1 April 2016. Retrieved 15 September 2017.
  10. ^ van den Hoek C, Mann D, Jahns H (1995). Algae An Introduction to Phycology. Cambridge: Cambridge University Press. ISBN 0-521-30419-9. Archived from the original on 10 February 2023. Retrieved 7 April 2023.
  11. ^ a b Burki F (May 2014). "The eukaryotic tree of life from a global phylogenomic perspective". Cold Spring Harbor Perspectives in Biology. 6 (5): a016147. doi:10.1101/cshperspect.a016147. PMC 3996474. PMID 24789819.
  12. ^ DeRennaux B (2001). "Eukaryotes, Origin of". Encyclopedia of Biodiversity. Vol. 2. Elsevier. pp. 329–332. doi:10.1016/b978-0-12-384719-5.00174-x. ISBN 9780123847201.
  13. ^ Yamaguchi M, Worman CO (2014). "Deep-sea microorganisms and the origin of the eukaryotic cell" (PDF). Japanese Journal of Protozoology. 47 (1, 2): 29–48. Archived from the original (PDF) on 9 August 2017.
  14. ^ Bar-On, Yinon M.; Phillips, Rob; Milo, Ron (17 May 2018). "The biomass distribution on Earth". Proceedings of the National Academy of Sciences. 115 (25): 6506–6511. Bibcode:2018PNAS..115.6506B. doi:10.1073/pnas.1711842115. ISSN 0027-8424. PMC 6016768. PMID 29784790.
  15. ^ a b c d Burki F, Roger AJ, Brown MW, Simpson AG (2020). "The New Tree of Eukaryotes". Trends in Ecology & Evolution. 35 (1). Elsevier BV: 43–55. doi:10.1016/j.tree.2019.08.008. ISSN 0169-5347. PMID 31606140. S2CID 204545629.
  16. ^ Grosberg RK, Strathmann RR (2007). "The evolution of multicellularity: A minor major transition?" (PDF). Annu Rev Ecol Evol Syst. 38: 621–654. doi:10.1146/annurev.ecolsys.36.102403.114735. Archived (PDF) from the original on 14 March 2023. Retrieved 8 April 2023.
  17. ^ Parfrey L, Lahr D (2013). "Multicellularity arose several times in the evolution of eukaryotes" (PDF). BioEssays. 35 (4): 339–347. doi:10.1002/bies.201200143. PMID 23315654. S2CID 13872783. Archived (PDF) from the original on 25 July 2014. Retrieved 8 April 2023.
  18. ^ Popper ZA, Michel G, Hervé C, Domozych DS, Willats WG, Tuohy MG, Kloareg B, Stengel DB (2011). "Evolution and diversity of plant cell walls: From algae to flowering plants". Annual Review of Plant Biology. 62 (1): 567–590. Bibcode:2011AnRPB..62..567P. doi:10.1146/annurev-arplant-042110-103809. hdl:10379/6762. PMID 21351878. S2CID 11961888.
  19. ^ Bonev B, Cavalli G (14 October 2016). "Organization and function of the 3D genome". Nature Reviews Genetics. 17 (11): 661–678. doi:10.1038/nrg.2016.112. hdl:2027.42/151884. PMID 27739532. S2CID 31259189.
  20. ^ O'Connor, Clare (2008). "Chromosome Segregation: The Role of Centromeres". Nature Education. Retrieved 18 February 2024. eukar
  21. ^ a b Brocks JJ, Logan GA, Buick R, Summons RE (August 1999). "Archean molecular fossils and the early rise of eukaryotes". Science. 285 (5430): 1033–1036. Bibcode:1999Sci...285.1033B. CiteSeerX 10.1.1.516.9123. doi:10.1126/science.285.5430.1033. PMID 10446042.
  22. ^ Hartman H, Fedorov A (February 2002). "The origin of the eukaryotic cell: a genomic investigation". Proceedings of the National Academy of Sciences of the United States of America. 99 (3): 1420–5. Bibcode:2002PNAS...99.1420H. doi:10.1073/pnas.032658599. PMC 122206. PMID 11805300.
  23. ^ Linka M, Weber AP (2011). "Evolutionary Integration of Chloroplast Metabolism with the Metabolic Networks of the Cells". In Burnap RL, Vermaas WF (eds.). Functional Genomics and Evolution of Photosynthetic Systems. Springer. p. 215. ISBN 978-94-007-1533-2. Archived from the original on 29 May 2016. Retrieved 27 October 2015.
  24. ^ Marsh M (2001). Endocytosis. Oxford University Press. p. vii. ISBN 978-0-19-963851-2.
  25. ^ Stalder D, Gershlick DC (November 2020). "Direct trafficking pathways from the Golgi apparatus to the plasma membrane". Seminars in Cell & Developmental Biology. 107: 112–125. doi:10.1016/j.semcdb.2020.04.001. PMC 7152905. PMID 32317144.
  26. ^ Hetzer MW (March 2010). "The nuclear envelope". Cold Spring Harbor Perspectives in Biology. 2 (3): a000539. doi:10.1101/cshperspect.a000539. PMC 2829960. PMID 20300205.
  27. ^ "Endoplasmic Reticulum (Rough and Smooth)". British Society for Cell Biology. Archived from the original on 24 March 2019. Retrieved 12 November 2017.
  28. ^ "Golgi Apparatus". British Society for Cell Biology. Archived from the original on 13 November 2017. Retrieved 12 November 2017.
  29. ^ "Lysosome". British Society for Cell Biology. Archived from the original on 13 November 2017. Retrieved 12 November 2017.
  30. ^ Saygin D, Tabib T, Bittar HE, et al. (July 1957). "Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension". Pulmonary Circulation. 10 (1): 131–144. Bibcode:1957SciAm.197a.131S. doi:10.1038/scientificamerican0757-131. PMC 7052475. PMID 32166015.
  31. ^ Voet D, Voet JC, Pratt CW (2006). Fundamentals of Biochemistry (2nd ed.). John Wiley and Sons. pp. 547, 556. ISBN 978-0471214953.
  32. ^ Mack S (1 May 2006). "Re: Are there eukaryotic cells without mitochondria?". madsci.org. Archived from the original on 24 April 2014. Retrieved 24 April 2014.
  33. ^ Zick M, Rabl R, Reichert AS (January 2009). "Cristae formation-linking ultrastructure and function of mitochondria". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1793 (1): 5–19. doi:10.1016/j.bbamcr.2008.06.013. PMID 18620004.
  34. ^ Watson J, Hopkins N, Roberts J, Steitz JA, Weiner A (1988). "28: The Origins of Life". Molecular Biology of the Gene (Fourth ed.). Menlo Park, California: Benjamin Cummings. p. 1154. ISBN 978-0-8053-9614-0.
  35. ^ a b Karnkowska A, Vacek V, Zubá?ová Z, et al. (May 2016). "A Eukaryote without a Mitochondrial Organelle". Current Biology. 26 (10): 1274–1284. Bibcode:2016CBio...26.1274K. doi:10.1016/j.cub.2016.03.053. PMID 27185558.
  36. ^ Davis JL (13 May 2016). "Scientists Shocked To Discover Eukaryote With NO Mitochondria". IFL Science. Archived from the original on 17 February 2019. Retrieved 13 May 2016.
  37. ^ McCutcheon JP (October 2021). "The Genomics and Cell Biology of Host-Beneficial Intracellular Infections". Annual Review of Cell and Developmental Biology. 37 (1): 115–142. doi:10.1146/annurev-cellbio-120219-024122. PMID 34242059.
  38. ^ Sato N (2006). "Origin and Evolution of Plastids: Genomic View on the Unification and Diversity of Plastids". In Wise RR, Hoober JK (eds.). The Structure and Function of Plastids. Advances in Photosynthesis and Respiration. Vol. 23. Springer Netherlands. pp. 75–102. doi:10.1007/978-1-4020-4061-0_4. ISBN 978-1-4020-4060-3.
  39. ^ Minnhagen S, Carvalho WF, Salomon PS, Janson S (September 2008). "Chloroplast DNA content in Dinophysis (Dinophyceae) from different cell cycle stages is consistent with kleptoplasty". Environ. Microbiol. 10 (9): 2411–7. Bibcode:2008EnvMi..10.2411M. doi:10.1111/j.1462-2920.2008.01666.x. PMID 18518896.
  40. ^ Body? A (February 2018). "Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis". Biological Reviews of the Cambridge Philosophical Society. 93 (1): 201–222. doi:10.1111/brv.12340. PMID 28544184. S2CID 24613863.
  41. ^ Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (1 January 2002). "Molecular Motors". Molecular Biology of the Cell (4th ed.). New York: Garland Science. ISBN 978-0-8153-3218-3. Archived from the original on 8 March 2019. Retrieved 6 April 2023.
  42. ^ Sweeney HL, Holzbaur EL (May 2018). "Motor Proteins". Cold Spring Harbor Perspectives in Biology. 10 (5): a021931. doi:10.1101/cshperspect.a021931. PMC 5932582. PMID 29716949.
  43. ^ Bardy SL, Ng SY, Jarrell KF (February 2003). "Prokaryotic motility structures". Microbiology. 149 (Pt 2): 295–304. doi:10.1099/mic.0.25948-0. PMID 12624192.
  44. ^ Silflow CD, Lefebvre PA (December 2001). "Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii". Plant Physiology. 127 (4): 1500–7. doi:10.1104/pp.010807. PMC 1540183. PMID 11743094.
  45. ^ Vorobjev IA, Nadezhdina ES (1987). The Centrosome and Its Role in the Organization of Microtubules. International Review of Cytology. Vol. 106. pp. 227–293. doi:10.1016/S0074-7696(08)61714-3. ISBN 978-0-12-364506-7. PMID 3294718.
  46. ^ Howland JL (2000). The Surprising Archaea: Discovering Another Domain of Life. Oxford: Oxford University Press. pp. 69–71. ISBN 978-0-19-511183-5.
  47. ^ Fry SC (1989). "The Structure and Functions of Xyloglucan". Journal of Experimental Botany. 40 (1): 1–11. doi:10.1093/jxb/40.1.1.
  48. ^ Hamilton MB (2009). Population genetics. Wiley-Blackwell. p. 55. ISBN 978-1-4051-3277-0.
  49. ^ Taylor TN, Kerp H, Hass H (2005). "Life history biology of early land plants: Deciphering the gametophyte phase". Proceedings of the National Academy of Sciences of the United States of America. 102 (16): 5892–5897. Bibcode:2005PNAS..102.5892T. doi:10.1073/pnas.0501985102. PMC 556298. PMID 15809414.
  50. ^ Lane N (June 2011). "Energetics and genetics across the prokaryote-eukaryote divide". Biology Direct. 6 (1): 35. doi:10.1186/1745-6150-6-35. PMC 3152533. PMID 21714941.
  51. ^ Dacks J, Roger AJ (June 1999). "The first sexual lineage and the relevance of facultative sex". Journal of Molecular Evolution. 48 (6): 779–783. Bibcode:1999JMolE..48..779D. doi:10.1007/PL00013156. PMID 10229582. S2CID 9441768.
  52. ^ a b Ramesh MA, Malik SB, Logsdon JM (January 2005). "A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis". Current Biology. 15 (2): 185–191. Bibcode:2005CBio...15..185R. doi:10.1016/j.cub.2005.01.003. PMID 15668177. S2CID 17013247.
  53. ^ a b Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM (August 2007). Hahn MW (ed.). "An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis". PLOS ONE. 3 (8): e2879. Bibcode:2008PLoSO...3.2879M. doi:10.1371/journal.pone.0002879. PMC 2488364. PMID 18663385.
  54. ^ Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, Lawyer P, Dobson DE, Beverley SM, Sacks DL (April 2009). "Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector". Science. 324 (5924): 265–268. Bibcode:2009Sci...324..265A. doi:10.1126/science.1169464. PMC 2729066. PMID 19359589.
  55. ^ Lahr DJ, Parfrey LW, Mitchell EA, Katz LA, Lara E (July 2011). "The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms". Proceedings: Biological Sciences. 278 (1715): 2081–2090. doi:10.1098/rspb.2011.0289. PMC 3107637. PMID 21429931.
  56. ^ Moore RT (1980). "Taxonomic proposals for the classification of marine yeasts and other yeast-like fungi including the smuts". Botanica Marina. 23 (6): 361–373. Bibcode:1980BoMar..23..361M. doi:10.1515/bot-1980-230605.
  57. ^ Goldfu? (1818). "Ueber die Classification der Zoophyten" [On the classification of zoophytes]. Isis, Oder, Encyclop?dische Zeitung von Oken (in German). 2 (6): 1008–1019. Archived from the original on 24 March 2019. Retrieved 15 March 2019. From p. 1008: "Erste Klasse. Urthiere. Protozoa." (First class. Primordial animals. Protozoa.) [Note: each column of each page of this journal is numbered; there are two columns per page.]
  58. ^ Scamardella JM (1999). "Not plants or animals: a brief history of the origin of Kingdoms Protozoa, Protista and Protoctista" (PDF). International Microbiology. 2 (4): 207–221. PMID 10943416. Archived from the original (PDF) on 14 June 2011.
  59. ^ a b Rothschild LJ (1989). "Protozoa, Protista, Protoctista: what's in a name?". Journal of the History of Biology. 22 (2): 277–305. doi:10.1007/BF00139515. PMID 11542176. S2CID 32462158. Archived from the original on 4 February 2020. Retrieved 4 February 2020.
  60. ^ Whittaker RH (January 1969). "New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms". Science. 163 (3863): 150–60. Bibcode:1969Sci...163..150W. CiteSeerX 10.1.1.403.5430. doi:10.1126/science.163.3863.150. PMID 5762760.
  61. ^ Knoll AH (1992). "The Early Evolution of Eukaryotes: A Geological Perspective". Science. 256 (5057): 622–627. Bibcode:1992Sci...256..622K. doi:10.1126/science.1585174. PMID 1585174. Eucarya, or eukaryotes
  62. ^ Patrick J. Keeling; Yana Eglit (21 November 2023). "Openly available illustrations as tools to describe eukaryotic microbial diversity". PLOS Biology. 21 (11): e3002395. doi:10.1371/JOURNAL.PBIO.3002395. ISSN 1544-9173. PMC 10662721. PMID 37988341. Wikidata Q123558544.
  63. ^ Burki F, Kaplan M, Tikhonenkov DV, et al. (January 2016). "Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista". Proceedings: Biological Sciences. 283 (1823): 20152802. doi:10.1098/rspb.2015.2802. PMC 4795036. PMID 26817772.
  64. ^ Adl SM, Bass D, Lane CE, et al. (January 2019). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". The Journal of Eukaryotic Microbiology. 66 (1): 4–119. doi:10.1111/jeu.12691. PMC 6492006. PMID 30257078.
  65. ^ a b Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida KI, Hashimoto T, Simpson A, Roger A (19 January 2018). "Phylogenomics Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group". Genome Biology and Evolution. 10 (2): 427–433. doi:10.1093/gbe/evy014. PMC 5793813. PMID 29360967.
  66. ^ Sch?n ME, Zlatogursky VV, Singh RP, et al. (2021). "Picozoa are archaeplastids without plastid". Nature Communications. 12 (1): 6651. bioRxiv 10.1101/2021.04.14.439778. doi:10.1038/s41467-021-26918-0. PMC 8599508. PMID 34789758. S2CID 233328713. Archived from the original on 2 February 2024. Retrieved 20 December 2021.
  67. ^ Tikhonenkov DV, Mikhailov KV, Gawryluk RM, et al. (December 2022). "Microbial predators form a new supergroup of eukaryotes". Nature. 612 (7941): 714–719. Bibcode:2022Natur.612..714T. doi:10.1038/s41586-022-05511-5. PMID 36477531. S2CID 254436650.
  68. ^ Strassert JF, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F (April 2019). Shapiro B (ed.). "New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life". Molecular Biology and Evolution. 36 (4): 757–765. doi:10.1093/molbev/msz012. PMC 6844682. PMID 30668767.
  69. ^ Yazaki, Euki; Yabuki, Akinori; Imaizumi, Ayaka; Kume, Keitaro; Hashimoto, Tetsuo; Inagaki, Yuji (2022). "The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include Microheliella maris". Open Biology. 12 (4): 210376. doi:10.1098/rsob.210376. PMC 9006020. PMID 35414259.
  70. ^ Torruella, Guifré; Galindo, Luis Javier; Moreira, David; López-García, Purificación (27 August 2024). "Phylogenomics of neglected flagellated protists supports a revised eukaryotic tree of life". bioRxiv.org. doi:10.1101/2024.05.15.594285. PMID 39642877.
  71. ^ Sch?n ME, Zlatogursky VV, Singh RP, et al. (2021). "Picozoa are archaeplastids without plastid". Nature Communications. 12 (1): 6651. bioRxiv 10.1101/2021.04.14.439778. doi:10.1038/s41467-021-26918-0. PMC 8599508. PMID 34789758. S2CID 233328713.
  72. ^ Tikhonenkov DV, Mikhailov KV, Gawryluk RM, et al. (December 2022). "Microbial predators form a new supergroup of eukaryotes". Nature. 612 (7941): 714–719. doi:10.1038/s41586-022-05511-5. PMID 36477531. S2CID 254436650.
  73. ^ Al Jewari, Caesar; Baldauf, Sandra L. (28 April 2023). "An excavate root for the eukaryote tree of life". Science Advances. 9 (17): eade4973. Bibcode:2023SciA....9E4973A. doi:10.1126/sciadv.ade4973. ISSN 2375-2548. PMC 10146883. PMID 37115919.
  74. ^ a b Latorre A, Durban A, Moya A, Pereto J (2011). "The role of symbiosis in eukaryotic evolution". In Gargaud M, López-Garcìa P, Martin H (eds.). Origins and Evolution of Life: An astrobiological perspective. Cambridge: Cambridge University Press. pp. 326–339. ISBN 978-0-521-76131-4. Archived from the original on 24 March 2019. Retrieved 27 August 2017.
  75. ^ Gabaldón T (October 2021). "Origin and Early Evolution of the Eukaryotic Cell". Annual Review of Microbiology. 75 (1): 631–647. doi:10.1146/annurev-micro-090817-062213. PMID 34343017. S2CID 236916203.
  76. ^ O'Malley MA, Leger MM, Wideman JG, Ruiz-Trillo I (March 2019). "Concepts of the last eukaryotic common ancestor". Nature Ecology & Evolution. 3 (3): 338–344. Bibcode:2019NatEE...3..338O. doi:10.1038/s41559-019-0796-3. hdl:10261/201794. PMID 30778187. S2CID 67790751.
  77. ^ Leander BS (May 2020). "Predatory protists". Current Biology. 30 (10): R510 – R516. Bibcode:2020CBio...30.R510L. doi:10.1016/j.cub.2020.03.052. PMID 32428491. S2CID 218710816.
  78. ^ Strassert JF, Irisarri I, Williams TA, Burki F (March 2021). "A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids". Nature Communications. 12 (1) 1879. Bibcode:2021NatCo..12.1879S. doi:10.1038/s41467-021-22044-z. PMC 7994803. PMID 33767194.
  79. ^ Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC (2013). "Molecular paleontology and complexity in the last eukaryotic common ancestor". Critical Reviews in Biochemistry and Molecular Biology. 48 (4): 373–396. doi:10.3109/10409238.2013.821444. PMC 3791482. PMID 23895660.
  80. ^ Rodrigues-Oliveira T, Wollweber F, Ponce-Toledo RI, et al. (2023). "Actin cytoskeleton and complex cell architecture in an Asgard archaean". Nature. 613 (7943): 332–339. Bibcode:2023Natur.613..332R. doi:10.1038/s41586-022-05550-y. hdl:20.500.11850/589210. PMC 9834061. PMID 36544020.
  81. ^ Miao, L.; Yin, Z.; Knoll, A. H.; Qu, Y.; Zhu, M. (2024). "1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China". Science Advances. 10 (4): eadk3208. Bibcode:2024SciA...10K3208M. doi:10.1126/sciadv.adk3208. PMC 10807817. PMID 38266082.
  82. ^ Han TM, Runnegar B (July 1992). "Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan". Science. 257 (5067): 232–5. Bibcode:1992Sci...257..232H. doi:10.1126/science.1631544. PMID 1631544.
  83. ^ Knoll AH, Javaux EJ, Hewitt D, Cohen P (June 2006). "Eukaryotic organisms in Proterozoic oceans". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 361 (1470): 1023–1038. doi:10.1098/rstb.2006.1843. PMC 1578724. PMID 16754612.
  84. ^ a b c d Retallack GJ, Krull ES, Thackray GD, Parkinson DH (2013). "Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa". Precambrian Research. 235: 71–87. Bibcode:2013PreR..235...71R. doi:10.1016/j.precamres.2013.05.015.
  85. ^ Hallbauer, D. K.; Jahns, H. M.; Beltmann, H. A. (December 1977). "Morphological and anatomical observations on some precambrian plants from the Witwatersrand, South Africa". Geologische Rundschau. 66 (1): 477–491. Bibcode:1977GeoRu..66..477H. doi:10.1007/BF01989590.
  86. ^ Lücking, Robert; Nelsen, Matthew P. (2018). "Ediacarans, Protolichens, and Lichen-Derived Penicillium". Transformative Paleobotany: 551–590. doi:10.1016/B978-0-12-813012-4.00023-1. ISBN 978-0-12-813012-4.
  87. ^ El Albani A, Bengtson S, Canfield DE, et al. (July 2010). "Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago". Nature. 466 (7302): 100–104. Bibcode:2010Natur.466..100A. doi:10.1038/nature09166. PMID 20596019. S2CID 4331375.
  88. ^ El Albani, Abderrazak (2023). "A search for life in Palaeoproterozoic marine sediments using Zn isotopes and geochemistry" (PDF). Earth and Planetary Science Letters. 623 118169. Bibcode:2023E&PSL.61218169E. doi:10.1016/j.epsl.2023.118169. S2CID 258360867.
  89. ^ Ossa Ossa, Frantz; Pons, Marie-Laure; Bekker, Andrey; Hofmann, Axel; Poulton, Simon W.; et al. (2023). "Zinc enrichment and isotopic fractionation in a marine habitat of the c. 2.1 Ga Francevillian Group: A signature of zinc utilization by eukaryotes?" (PDF). Earth and Planetary Science Letters. 611 118147. Bibcode:2023E&PSL.61118147O. doi:10.1016/j.epsl.2023.118147.
  90. ^ Fakhraee, Mojtaba; Tarhan, Lidya G.; Reinhard, Christopher T.; Crowe, Sean A.; Lyons, Timothy W.; Planavsky, Noah J. (May 2023). "Earth's surface oxygenation and the rise of eukaryotic life: Relationships to the Lomagundi positive carbon isotope excursion revisited". Earth-Science Reviews. 240 104398. Bibcode:2023ESRv..24004398F. doi:10.1016/j.earscirev.2023.104398. S2CID 257761993.
  91. ^ Bengtson S, Belivanova V, Rasmussen B, Whitehouse M (May 2009). "The controversial "Cambrian" fossils of the Vindhyan are real but more than a billion years older". Proceedings of the National Academy of Sciences of the United States of America. 106 (19): 7729–7734. Bibcode:2009PNAS..106.7729B. doi:10.1073/pnas.0812460106. PMC 2683128. PMID 19416859.
  92. ^ Ward P (9 February 2008). "Mass extinctions: the microbes strike back". New Scientist. pp. 40–43. Archived from the original on 8 July 2008. Retrieved 27 August 2017.
  93. ^ French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA, Hoshino Y, Peters CA, George SC, Love GD, Brocks JJ, Buick R, Summons RE (May 2015). "Reappraisal of hydrocarbon biomarkers in Archean rocks". Proceedings of the National Academy of Sciences of the United States of America. 112 (19): 5915–5920. Bibcode:2015PNAS..112.5915F. doi:10.1073/pnas.1419563112. PMC 4434754. PMID 25918387.
  94. ^ Brocks JJ, Jarrett AJ, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T (August 2017). "The rise of algae in Cryogenian oceans and the emergence of animals". Nature. 548 (7669): 578–581. Bibcode:2017Natur.548..578B. doi:10.1038/nature23457. PMID 28813409. S2CID 205258987.
  95. ^ Gold DA, Caron A, Fournier GP, Summons RE (March 2017). "Paleoproterozoic sterol biosynthesis and the rise of oxygen". Nature. 543 (7645): 420–423. Bibcode:2017Natur.543..420G. doi:10.1038/nature21412. hdl:1721.1/128450. PMID 28264195. S2CID 205254122.
  96. ^ Wei JH, Yin X, Welander PV (24 June 2016). "Sterol Synthesis in Diverse Bacteria". Frontiers in Microbiology. 7: 990. doi:10.3389/fmicb.2016.00990. PMC 4919349. PMID 27446030.
  97. ^ Hoshino Y, Gaucher EA (June 2021). "Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis". Proceedings of the National Academy of Sciences of the United States of America. 118 (25): e2101276118. Bibcode:2021PNAS..11801276H. doi:10.1073/pnas.2101276118. PMC 8237579. PMID 34131078.
  98. ^ Isson TT, Love GD, Dupont CL, et al. (June 2018). "Tracking the rise of eukaryotes to ecological dominance with zinc isotopes". Geobiology. 16 (4): 341–352. Bibcode:2018Gbio...16..341I. doi:10.1111/gbi.12289. PMID 29869832.
[edit]
面藕是什么做的 控线是什么意思 做胃镜之前需要做什么准备 3月2日是什么星座 拉墨绿色的大便是什么原因
什么时候同房最容易怀孕 追求完美的人什么性格 小孩老是发烧什么原因 胆固醇高是什么引起的 牛肉和什么炒
执业药师是干什么的 野格是什么酒 8月6日是什么星座 人走茶凉下一句是什么 丢包率是什么意思
粒细胞是什么 儿童拉肚子挂什么科 什么的植物 spandex是什么面料 saba是什么药
先父遗传是什么意思hcv8jop6ns9r.cn 盐酸利多卡因注射作用是什么bfb118.com 热伤风是什么意思hcv8jop3ns4r.cn 双子座的幸运色是什么hcv9jop8ns1r.cn 肝素帽是什么hcv9jop6ns2r.cn
当兵有什么要求hcv8jop6ns9r.cn 肾轻度积水是什么意思hcv9jop6ns1r.cn 档次是什么意思xscnpatent.com 何乐而不为是什么意思hcv8jop8ns8r.cn 党费什么时候开始交hcv7jop5ns5r.cn
牛黄安宫丸什么季节吃hcv8jop9ns4r.cn 榴莲有什么营养hcv8jop9ns1r.cn 冠心病吃什么药hcv8jop4ns7r.cn 股骨头在什么位置hcv9jop4ns5r.cn 顶针什么意思hcv7jop5ns4r.cn
补钾用什么药96micro.com 脑ct都能查出什么病wmyky.com 摇曳是什么意思hcv7jop7ns1r.cn 为什么拼音hcv7jop6ns3r.cn kj是什么意思hcv7jop6ns9r.cn
百度