什么而去的四字词语| 青光眼用什么眼药水| 喝什么茶好| 路由器管理员密码是什么| 什么的月季| 肝区回声密集是什么意思| 康庄大道什么意思| 阑尾炎在什么位置| 多西他赛是什么药| 为什么不说话| 坐北朝南是什么意思| 肌酐高不能吃什么| 头孢和什么药不能一起吃| 禁令是什么意思| 什么病人要补氯化钾呢| crf是什么意思| 长沙有什么景点| ppl什么意思| 嗓子突然哑了是什么原因引起的| 康波是什么意思| 什么体质容易怀双胞胎| 两榜进士是什么意思| 佩戴朱砂有什么好处| 中元节是什么意思| 生长激素分泌的高峰期是什么时候| 双喜临门的临是什么意思| 煮馄饨放什么调料| 民政局是干什么的| 水果皇后是什么水果| 假卵是什么样子的| 年庚是什么意思| 雾霾是什么意思| 蜘蛛代表什么生肖| 吃什么东西| 眼尖什么意思| 什么是童话| 倾向是什么意思| 臣附议是什么意思| 坐月子能吃什么菜| 双性恋是什么意思| 肆意什么意思| vjc是什么品牌| 贫血做什么检查| bgm是什么意思| 月经要来之前有什么症状| 一把把什么| 星期一右眼皮跳是什么预兆| 什么球会自己长大| 饱不洗头饿不洗澡是为什么| 肋间神经痛用什么药| 茶叶有什么功效与作用| 狗是什么属性| 碱性磷酸酶低是什么原因| 一拃是什么意思| 六度万行 是什么意思| 鼻息肉是什么样的图片| aigle是什么牌子| 喝水呛咳是什么原因| 什么是腕管综合征| 补肝血吃什么药| 嘱托是什么意思| 淋巴细胞百分比低是什么意思| 改姓氏需要什么手续| 孕妇拉的屎是黑色的是因为什么| 磷偏低是什么原因| 六味地黄丸什么时候吃最好| 深蓝色是什么颜色| 哈尔滨市长什么级别| kdj是什么意思| 爱像什么| 耿耿于怀什么意思| 五指毛桃有什么用| 带状疱疹看什么科| 经常呕吐是什么原因| 哈喇子是什么意思| 天赋是什么| 什么是木薯| 斯德哥尔摩综合症是什么| 大明湖畔的夏雨荷是什么意思| 精神紊乱吃什么药| 生化流产是什么原因造成的| 手指尖发麻是什么原因| 倏地是什么意思| 女生下面流水是什么原因| 月经推迟不来吃什么药| 耳石症挂什么科| 一级军士长相当于什么级别| 瘟疫是什么意思| 左氧氟沙星治什么| 孕妇贫血对胎儿有什么影响| 献血和献血浆有什么区别| 内分泌紊乱吃什么药| 什么男什么女| 苹果为什么叫苹果| 社区医院属于什么级别| dv是什么牌子| 二月花是什么花| 补钙过量有什么害处| 圆脸女生适合什么发型| 10万个为什么的作者| 什么叫二氧化碳| 牙周炎挂什么科| mc什么意思| 3.19号是什么星座| 减肥早餐适合吃什么| 右边偏头痛什么原因| edsheeran为什么叫黄老板| 解构是什么意思| 羿字五行属什么| 吃什么补脑增强记忆力| 下半年有什么节日| 龙涎香是什么| 结核抗体阳性说明什么| 枇杷是什么季节的水果| 芒果什么人不适合吃| 胎儿永久性右脐静脉是什么意思| 耳鸣吃什么药效果好| 脸上突然长痣是什么原因| 牛肉馅配什么菜包饺子好吃| 阴囊瘙痒挂什么科室| 血清肌酐高说明什么问题| 睡眠瘫痪症是什么| 心脏24小时监测叫什么| 纠察是什么意思| 排卵期出血是什么原因造成的| 什么叫甲状腺弥漫病变| 什么的游泳| c2可以开什么车| 准生证是什么样子图片| 焦虑症吃什么| 女生自慰是什么感觉| 羊水污染是什么原因造成的| 近亲是什么意思| 为什么一进去就软了| 战国时期是什么时候| 脚后跟痒是什么原因| 什么是什么非| sigma是什么牌子| 惟妙惟肖是什么意思| 鳞状上皮增生是什么意思| 消化不好吃什么药| 血小板高是什么问题| 低烧吃什么| 走路腿软没劲是什么原因引起的| 碱性水是什么水| 犯太岁是什么意思啊| 手指倒刺是什么原因| dmd是什么病| 肉桂和桂皮有什么区别| 做亲子鉴定需要什么东西| 什么是虚拟币| 混油皮是什么特征| 悬壶济世是什么意思| 感冒能吃什么水果| 张什么舞什么| 梦见去看病是什么意思| 去美容院洗脸有什么好处| 薛之谦为什么离婚| 中元节出什么生肖| 三点水加个及念什么| 什么的形象| 牛肉炒什么菜| 1989年是什么年| 无咎是什么意思| 什么的小鸡| 附带是什么意思| 什么是小奶狗| 血糖高忌吃什么| 发物是什么| 千焦是什么意思| 头疼头晕挂什么科| hp检查是什么| 6月7日什么星座| 胸闷吃什么药| 女儿取什么名字好听| 吃什么对肺有好处| 盗汗什么意思| 麦粒肿用什么眼药水| 蛇床子是什么| 药石是什么意思| 什么是汛期| 黑科技是什么意思| 胡子白了是什么原因| 子时属什么生肖| fasola是什么品牌| 有小肚子是什么原因| 锦纶是什么面料优缺点| 乌龟代表什么生肖| 芭蕉花炖猪心治什么病| 高考300分能上什么大学| 送情人什么礼物最好| 旭日东升是什么生肖| 眼睛红血丝用什么眼药水| 胆囊炎什么症状| 拔智齿后吃什么恢复快| 日柱将星是什么意思| 什么是湿疹| 尿液茶色是什么原因| 脚背肿是什么原因| 10000mah是什么意思| 咽喉炎吃什么消炎药| 什么都想吃| omo是什么意思| 做什么菜好吃又简单| 盎司是什么意思| 支架后吃什么药| 氮是什么| 脚背浮肿是什么原因引起的| 灰指甲有什么症状| 胃反酸吃什么药最好| 氏是什么意思| 很多条腿的虫子叫什么| 鸭子烧什么配菜好吃| 1月30号是什么星座| 结膜炎滴什么眼药水| 血糖偏高吃什么食物好| 宫腔内囊性结构是什么意思| 顾名思义的顾是什么意思| 梅花表属于什么档次| 灵官爷是什么神| 充军是什么意思| 熟褐色是什么颜色| 排卵期是什么| 卵泡是什么东西| 房性心动过速是什么意思| 吃了避孕药有什么反应| gold是什么牌子| 什么是氧化剂| tap是什么意思| strange是什么意思| 同样的药为什么价格相差很多| 精神什么意思| 转网是什么意思| 吃什么会食物中毒| 梦见血是什么预兆解梦| 法不传六耳什么意思| 法官是干什么的| 魁元是什么意思| 七年之痒是什么意思| 息肉吃什么药可以消掉| 经常叹气是什么原因| 离宫是什么意思| 缺碘吃什么| 做梦烧纸钱什么意思| 主治医师是什么级别| 收放自如是什么意思| slogan什么意思| ph阳性是什么意思| 脚踝肿是什么原因引起的| 高密度脂蛋白胆固醇低是什么意思| 一失足成千古恨是什么意思| 十一月二十是什么星座| 孩子干咳吃什么药效果好| 发冷发热是什么原因| 吃什么补铁快| 异位妊娠是什么意思| 邓超是什么星座| 客家人什么意思| 单亲家庭什么意思| 母的第三笔是什么| 子宫腺肌症是什么意思| 1936年中国发生了什么| 梦见雪是什么意思| 10周年结婚是什么婚| 百度Jump to content

hcg阴性是什么意思

From Wikipedia, the free encyclopedia
百度   1978年2月,孙春兰进入鞍山化纤毛纺总厂工作,先后担任厂党委常委,政治处副主任(主持工作),总厂副厂长、党委副书记等职,并在1986年升任毛纺总厂党委书记。

Electrochemical Random-Access Memory (ECRAM) is a type of non-volatile memory (NVM) with multiple levels per cell (MLC) designed for deep learning analog acceleration.[1][2][3] An ECRAM cell is a three-terminal device composed of a conductive channel, an insulating electrolyte, an ionic reservoir, and metal contacts. The resistance of the channel is modulated by ionic exchange at the interface between the channel and the electrolyte upon application of an electric field. The charge-transfer process allows both for state retention in the absence of applied power, and for programming of multiple distinct levels, both differentiating ECRAM operation from that of a field-effect transistor (FET). The write operation is deterministic and can result in symmetrical potentiation and depression, making ECRAM arrays attractive for acting as artificial synaptic weights in physical implementations of artificial neural networks (ANN). The technological challenges include open circuit potential (OCP) and semiconductor foundry compatibility associated with energy materials. Universities, government laboratories, and corporate research teams have contributed to the development of ECRAM for analog computing. Notably, Sandia National Laboratories designed a lithium-based cell inspired by solid-state battery materials,[4] Stanford University built an organic proton-based cell,[5] and International Business Machines (IBM) demonstrated in-memory selector-free parallel programming for a logistic regression task in an array of metal-oxide ECRAM designed for insertion in the back end of line (BEOL).[6] In 2022, researchers at Massachusetts Institute of Technology built an inorganic, CMOS-compatible protonic technology that achieved near-ideal modulation characteristics using nanosecond fast pulses.[7]

Operation

[edit]
ECRAM synaptic cell layout and operating principle

Write

[edit]

Stress to the gate, relative to channel electrodes, can be applied in the form of fixed current or bias, driving ions toward - or away from - the electrolyte/channel interface where charge transfer occurs with free carriers. Upon insertion in the channel, the ionic charge is neutralized and the atomic species intercalate or bind to the conductive host matrix, in some cases yielding strain and localized phase transformation. Such reversible processes are equivalent to anodic/cathodic reactions in battery cells or electrochromic devices. Although in ECRAM, the programming of the memory element is defined not as a change in capacity or opacity, but by a change of channel conductivity associated with atomic species being inserted or removed as a result of the stress signal.

Read

[edit]

The read operation is decoupled from the write operation thanks to the presence of three electrodes, therefore limiting read disturb. A small bias is applied between the channel electrodes, with the resulting read current being proportional to the channel conductivity, hence sensing the programmed state of the device.

Speed

[edit]

The programming speed of ECRAM cells is not limited by the bulk diffusion of ions. They indeed only need to cross the interface plane between the electrolyte and the channel to induce a change in conductivity. Nanosecond write pulses can indeed trigger programming.[8] Trade-offs between gate capacitance, electronic conductivity, etc., can yield settling transients, limiting the maximum read-write frequency.[9]

Arrays

[edit]

ECRAM arrays are integrated in a pseudo-crossbar layout, the gate access line being common to all devices in a row or column. If a change in electrochemical potential, the driving force of a battery, occurs upon ionic exchange between channel and gate electrode, an open circuit potential (OCP) exists at the gate contact and will differ device to device depending on the programmed state. To prevent cross-talk between cells sharing a gate line, an access device to isolate each one is added in series with the memory element.[10] Suppressing OCP in the ECRAM design, minimizes the cell size/complexity, allowing for selector-free parallel read/programming of device arrays.[6]

Synaptic function

[edit]
(Left) Illustration of analog matrix-vector multiply operation in a pseudo-crossbar ecram array. (Right) Illustration of the programming of 50 distinct and reversible states in the ecram synaptic cell.

Principle

[edit]

Non-volatile memory (NVM) can be leveraged for in-memory compute, thereby reducing the frequency of data transfer between storage and processing units. This can ultimately improve compute time and energy efficiency over hierarchical system architectures by eliminating the Von Neumann bottleneck. Hence, when using multi-level cells (MLC) at the nodes of cross-bar arrays, one can perform analog operations on time or voltage encoded data such as vector (row input signal) × matrix (memory array) multiply. Following Kirchhoff's and Ohm's laws, the resulting vector is then obtained by integrating the current collected at each column. For ECRAM cells, an additional line is added at each row to write the cells during programming cycles, thereby yielding a pseudo-crossbar architecture. In the field of artificial intelligence (AI), deep neural networks (DNN) are used for classification and learning tasks, relying on a large number of matrix-multiply operations. Therefore, analog compute with NVM technology for such tasks are extremely attractive. ECRAM cells are uniquely positioned for use in analog deep learning accelerators due to their inherent deterministic and symmetric programming nature when compared to other devices such as resistive RAM (ReRAM or RRAM) and phase-change memory (PCM).

Requirements

[edit]
Metric Unit NVM synaptic
cell target[11]
G range nS 9-72
on/off ratio n.a. 8
# of states n.a. 1000
up/down asymmetry % 5
write time ns 1

Physical implementation of artificial neural networks (ANN) must perform at iso-accuracy when benchmarked against floating point precision weights in software. This sets the boundary for device properties needed for analog deep learning accelerators. In the design of their resisistive processing unit (RPU), IBM Research has published such requirements,[11] a subset of which is listed here. Algorithm and hardware co-design can relax them somewhat but not without other trade-offs.[12]

NVM use as synaptic weights in lieu of storage implies significantly different requirements when it comes to target resistance range, number of levels, and programming speed and symmetry. Because the in-memory computation occurs in parallel through the array, many devices are addressed concurrently and therefore need to have a high average resistance to limit energy dissipation. To perform high-accuracy computation and be resilient to noise, the NVM cell needs a large number of distinct states. The programming time needs only to be fast between levels, not from the highest to the lowest resistance states. During each programming cycle (back-propagation), weight updates can be negative or positive, and the up/down traces therefore need symmetry to allow learning algorithms to converge. All NVM technologies do struggle with these targets. ECRAM individual cells can meet such stringent metrics,[6] but also need to demonstrate high-density array yield and stochasticity.

Demos with ECRAM Synaptic Arrays

[edit]

Sandia National Laboratories

[edit]

As reported in a 2019 publication in Science, by Elliot J. Fuller, Alec A. Talin, et al. from Sandia National Laboratories, in collaboration with Stanford University, and the University of Massachusetts Amherst:[10]

Using co-planar organic multilevel cells, isolated by conductive bridge memory (CBM) devices, the team demonstrates parallel programming and addressing in up to 3×3 arrays. In particular a 2-layer neural network is mapped to the array by transferring the weights necessary to perform an inference task resulting in a XOR operation on the binary input vector.

Individual cells are shown to have the following properties (not all achieved in the same device configuration); speed = 1 MHz read-write cycles, number of states > 50 (tunable), resistance range = 50-100 nS (tunable), endurance > 108 write ops, size = 50×50 μm2.

IBM Research

[edit]

As reported in a 2019 proceeding of the IEEE International Electron Device Meeting (IEDM), by Seyoung Kim, John Rozen, et al. from IBM Research:[6]

Using metal-oxide ECRAM cells, selector-free, the team demonstrates parallel programming and addressing in 2×2 arrays. In particular, a logistic regression task is performed in-memory with 1,000 2×1 vectors as training set. 2D curve fit is achieved in a dozen epochs.

Individual cells are shown to have the following properties (not all achieved in the same device configuration); speed = 10 ns write pulses, number of states > 1,000 (tunable), resistance range = 0-50 μS (tunable), endurance > 107 write ops, size < 1×1 μm2.

Cell implementations

[edit]

Various institutions have demonstrated ECRAM cells with vastly different materials, layouts, and performances.
An example set for discrete cells is listed in the table.

Ion Channel Device Size Write Pulse Length Reference
Li+
WO
3
100 x 100 nm2 5 ns [8]
Li+
Li
1?x
CO
2
~1 mm2 0.5 s [4]
Li+
Graphene 36 μm2 10 ms [13]
Li+
α-MO
3
~1 mm2 10 ms [14]
H+
PEDOT:PSS 0.001 mm2 5 ms [5]
H+
WO
3
0.05 mm2 5 ms [15]
H+
WO
3
0.025 mm2 210 ms [16]
H+
WO
3
0.01 mm2 0.1 s [17]
H+ 2D MXene 100 μm2 200 ns [18]

Li-ECRAM

[edit]

Based on lithium ions, Li-ECRAM devices have demonstrated repeatable and controlled switching by applying known materials from battery technology to the memory design.[4][13][14] Consequently, such cells can exhibit an OCP which varies over several volts, depending on the programmed state.

H-ECRAM

[edit]

Based on hydrogen ions, H-ECRAM devices have proven fast, necessitating small driving forces to induce programming.[5][15][16] High diffusion coefficients in various materials can be accompanied by lack of retention within the memory cell, impacting endurance. Most H-ECRAM designs use liquid and/or organic electrolytes. In a 2022 study, researchers at Massachusetts Institute of Technology demonstrated a CMOS-compatible technology based on phosphosilicate glass electrolyte that achieved ultrafast modulation characteristics with high energy efficiency.[7] The same year researchers at the Royal Institute of Technology KTH showed ECRAMS based on hydrogen intercalation into the 2D material MXene, marking the first demonstration of high speed 2D ECRAMs. [18]

MO-ECRAM

[edit]

Metal-oxide based ECRAM, are inspired from OxRam materials and high-k/metal gate technology used in commercial semiconductor offerings. MO-ECRAM do enable negligible OCP and sub-μs write operations.[6]

VLSI

[edit]
Processed 200mm si wafer

For advanced semiconductor memory or compute applications, a technology needs to be compatible with very large scale integration (VLSI). This puts constraints on materials used, and the techniques employed to fabricate functional devices. The implications for ECRAM are described here.

Semiconductor foundry

[edit]

A semiconductor foundry can handle several technologies and has strict rules when it comes to materials being introduced in its expensive toolset to avoid cross-contamination and loss of device yield. In particular, metallic mobile ions, if present in active areas, can induce device drift and affect reliability. There are several other considerations for the foundries; including safety, cost, volume, etc. Hence, lithium ion-based Li-ECRAM faces unique challenges beyond the presence of OCP.

Back end of line (BEOL)

[edit]

Memory arrays require logic periphery to operate and interface with the rest of the compute system. Such periphery is based on field-effect transistors (FETs) built on the surface of silicon wafer substrates with a high thermal budget at the front end of line (FEOL). Memory cells can be inserted between upper metal levels at back end of line (BEOL) but will still need to remain unaffected by temperatures up to ~400 °C used in subsequent steps. Together with high density patterning challenges, these restrictions make organic devices unsuitable for such integration. The ECRAMs based on 2D MXene materials [18] have shown the potential to be unaffected by 400 °C heating, but additional development is needed for the integration of ion conductors.

Heterogeneous integration (HI)

[edit]

One way to introduce novel memory materials can be to use heterogeneous integration (HI) where the device array is fabricated independently from the logic controls and then bonded to the FET-containing chip to enable its use as high bandwidth memory (HBM). However, the cost and complexity associated with such scheme negatively affects the value proposition for displacing existing memory technologies.

References

[edit]
  1. ^ Shi, J.; Ha, S. D.; Zhou, Y.; Schoofs, F.; Ramanathan, S. (2013). "A correlated nickelate synaptic transistor". Nature Communications. 4: 2676. Bibcode:2013NatCo...4.2676S. doi:10.1038/ncomms3676. PMID 24177330.
  2. ^ Tang, Jianshi; Bishop, Douglas; Kim, Seyoung; Copel, Matt; Gokmen, Tayfun; Todorov, Teodor; Shin, SangHoon; Lee, Ko-Tao; Solomon, Paul (2025-08-07). "ECRAM as Scalable Synaptic Cell for High-Speed, Low-Power Neuromorphic Computing". 2018 IEEE International Electron Devices Meeting (IEDM). pp. 13.1.1–4. doi:10.1109/IEDM.2018.8614551. ISBN 978-1-7281-1987-8. S2CID 58674536. Retrieved 2025-08-07.
  3. ^ "Finite element modeling of electrochemical random access memory - iis-projects". iis-projects.ee.ethz.ch. Zürich, Switzerland: ETH Zurich. Retrieved 2025-08-07.
  4. ^ a b c 'E. J. Fuller et al., Adv. Mater., 29, 1604310 (2017)
  5. ^ a b c Y. van de Burgt et al., Nature Electronics, 1, 386 (2018)
  6. ^ a b c d e Kim, S. (2019). "Metal-oxide based, CMOS-compatible ECRAM for Deep Learning Accelerator". 2019 IEEE International Electron Devices Meeting (IEDM). pp. 35.7.1–4. doi:10.1109/IEDM19573.2019.8993463. ISBN 978-1-7281-4032-2. S2CID 211211273.
  7. ^ a b Onen, Murat; Emond, Nicolas; Wang, Baoming; Zhang, Difei; Ross, Frances M.; Li, Ju; Yildiz, Bilge; del Alamo, Jesús A. (29 July 2022). "Nanosecond protonic programmable resistors for analog deep learning". Science. 377 (6605): 539–543. Bibcode:2022Sci...377..539O. doi:10.1126/science.abp8064. ISSN 0036-8075. PMID 35901152. S2CID 251159631.
  8. ^ a b Tang, J. (2018). "ECRAM as Scalable Synaptic Cell for High-Speed, Low-Power Neuromorphic Computing". 2018 IEEE International Electron Devices Meeting (IEDM). pp. 13.1.1–4. doi:10.1109/IEDM.2018.8614551. ISBN 978-1-7281-1987-8. S2CID 58674536.
  9. ^ D. Bishop et al., proceedings of the international conference in Solid-State Devices and Materials (SSDM), pp. 23-24 (2018)
  10. ^ a b Fuller, E.J.; Keene, S.T.; Melianas, A.; Wang, Z.; Agarwal, S.; Li, Y.; Tuchman, Y.; James, C.D.; Marinella, M.J.; Yang, J.J.; Salleo, A.; Talin, A.A. (2019). "Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing". Science. 364 (6440): 570–4. Bibcode:2019Sci...364..570F. doi:10.1126/science.aaw5581. PMID 31023890. S2CID 133605392.
  11. ^ a b Tayfun, G.; Yurii, V. (2016). "Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations". Frontiers in Neuroscience. 10: 333. doi:10.3389/fnins.2016.00333. PMC 4954855. PMID 27493624.
  12. ^ Tayfun, G.; Haensch, H. (2020). "Algorithm for Training Neural Networks on Resistive Device Arrays". Frontiers in Neuroscience. 14: 103. doi:10.3389/fnins.2020.00103. PMC 7054461. PMID 32174807.
  13. ^ a b Sharbati, M.T.; Du, Y.; Torres, J.; Ardolino, N.D.; Yun, M.; Xiong, F. (2018). "Artificial Synapses: Low-Power, Electrochemically Tunable Graphene Synapses for Neuromorphic Computing". Adv. Mater. 30: 1870273. doi:10.1002/adma.201870273.
  14. ^ a b Yang, C.-S.; Shang, D.-S.; Liu, N.; Fuller, E.J.; Agrawal, S.; Alec Talin, A.; Li, Y.-Q.; Shen, B.-G.; Sun, Y. (2018). "All-Solid-State Synaptic Transistor with Ultralow Conductance for Neuromorphic Computing". Adv. Funct. Mater. 28 (42): 1804170. doi:10.1002/adfm.201804170. OSTI 1472248. S2CID 104934211.
  15. ^ a b Yao, X.; Klyukin, K.; Lu, W. (2020). "Protonic solid-state electrochemical synapse for physical neural networks". Nat Commun. 11 (1): 3134. Bibcode:2020NatCo..11.3134Y. doi:10.1038/s41467-020-16866-6. PMC 7371700. PMID 32561717.
  16. ^ a b Yang, J.-T.; Ge, C.; Du, J.-Y.; Huang, H.-Y.; He, M.; Wang, C.; Lu, H.-B.; Yang, G.-Z.; Jin, K.-J. (2018). "Artificial Synapses Emulated by an Electrolyte-Gated Tungsten-Oxide Transistor". Adv. Mater. 30 (34): 1801548. Bibcode:2018AdM....3001548Y. doi:10.1002/adma.201801548. PMID 29974526. S2CID 49655665.
  17. ^ J. Lee et al., proceedings of the IEEE international Silicon Nanoelectronics Workshop (SNW), pp. 31-32 (2018)
  18. ^ a b c Melianas, Armantas; Kang, Min-A; VahidMohammadi, Armin; Quill, Tyler James; Tian, Weiqian; Gogotsi, Yury; Salleo, Alberto; Hamedi, Mahiar Max (March 2022). "High-Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene". Advanced Functional Materials. 32 (12): 2109970. doi:10.1002/adfm.202109970. ISSN 1616-301X. S2CID 244484634.
[edit]
什么是性瘾症 什么叫高脂血症 马齿苋煮水喝有什么功效 脚踝疼痛是什么原因 你叫什么名字英语怎么说
盛世美颜是什么意思 过敏性紫癜是什么病 子宫肌瘤有什么症状表现 瘦马什么意思 什么是干槽症
神仙是什么意思 尿酸高吃什么可以降下去 轻微脑震荡有什么表现 mic是什么 肚子突然变大是什么原因
气血不足吃什么食物好 血脂高吃什么能降下来 控制欲是什么意思 什么是营养 红细胞减少是什么原因
交社保有什么用hcv9jop3ns5r.cn 隔三差五是什么意思hcv8jop1ns1r.cn 12月18是什么星座hcv8jop4ns3r.cn 伊朗是什么教派hcv8jop5ns3r.cn 尿蛋白是什么病hcv8jop5ns8r.cn
含义是什么意思hcv8jop3ns5r.cn 九王念什么hcv7jop6ns6r.cn 自来卷的头发适合什么发型hcv7jop9ns2r.cn b型o型生出来的孩子什么血型hcv7jop9ns4r.cn 天庭是什么意思hcv8jop4ns1r.cn
2月11号是什么星座jiuxinfghf.com 什么是射线hcv8jop9ns0r.cn 养肝护肝吃什么食物好hcv9jop4ns7r.cn 女生掉头发严重是什么原因hcv8jop8ns3r.cn 超生是什么意思hcv8jop4ns1r.cn
朝鲜为什么那么落后xinmaowt.com 身上长小红点是什么原因hcv8jop6ns7r.cn 属鸡和什么属相相克hcv7jop5ns1r.cn 八面玲珑代表什么生肖hcv7jop7ns4r.cn pp材质是什么材质hcv8jop9ns3r.cn
百度