儿童抗o高会引起什么病| 自身免疫性疾病是什么意思| 平均血红蛋白含量偏低是什么意思| 乙肝两对半25阳性是什么意思| 浑身乏力吃什么药| 项韧带钙化是什么意思| 焦虑会引起什么症状| 痣的位置代表什么| 赫兹是什么意思| 羟苯乙酯是什么东西| 下发是什么意思| 频繁流鼻血是什么病的前兆| 第一次是什么意思| 优甲乐是治什么病的| ifyou什么意思| 肾病可以吃什么水果| 贤上腺瘤是什么意思| 饴糖是什么糖| 手到擒来是什么意思| 刷墙的白色涂料叫什么| 黄精有什么作用和功效| 童养媳是什么意思| 小孩耳朵痛什么原因| 什么动物不长胡须| 牙疼喝什么药| 什么是肾阴虚| 恍恍惚惚什么意思| 奶粉结块是什么原因| 肾不好吃什么好| 百无一用是什么意思| 耵聍是什么| 理工科是什么意思| 法西斯战争是什么意思| 极核是什么| 直接胆红素偏高是什么意思| 闲情雅致是什么意思| 肌炎有什么症状| 梦到抓鱼是什么意思| 石家庄有什么好玩的景点| 头疼吃什么好| 轱辘是什么意思| 宫颈多发纳囊是什么病| 为什么会得皮炎| 天蝎座和什么星座最配| rebecca什么意思| 上焦不通吃什么中成药| 袍哥什么意思| 仇在姓氏中读什么| 胃在什么位置图片| rop是什么意思| 罗刹女是什么意思| 除是什么意思| 违法是什么意思| 泛性恋是什么意思| 花开富贵是什么生肖| 郫县豆瓣酱能做什么菜| 黄历今天是什么日子| 定投是什么意思| 精索静脉曲张挂什么科| 月经突然停止是什么原因| 早上醒来手麻是什么原因| 肝硬化是什么症状| 停月经有什么症状| 什么驱蚊效果最好| 卤什么东西好吃| 饮什么止渴| 为什么会长黑痣| 宫保鸡丁属于什么菜系| 甲亢吃什么药好得快| 溃疡性结肠炎有什么症状| 全青皮是什么皮| 脂溢性脱发用什么洗发水好| 盐酸达泊西汀片是什么药| 什么是继发性高血压| 一个人自言自语的说话是什么病| 精油有什么作用| 孕妇建档需要什么资料| girls是什么意思| 梦见自己家盖房子是什么预兆| 小孩经常吐是什么原因| 褐色分泌物是什么原因引起的| 食管ca是什么意思| 网恋是什么意思| 肯德基为什么叫kfc| 端坐呼吸常见于什么病| 冰恋是什么意思| 做b超需要挂什么科| 西昌火把节是什么时候| 梅毒什么样| 什么手串最好| 家里狗死了预示着什么| 儒字五行属什么| 0.01是什么意思| 取环挂什么科| 什么叫失眠| 7.11是什么日子| 外甥是什么意思| 眉毛上长痣代表什么| 翻什么越什么| 什么都不是| 荆芥的别名叫什么| 梅毒为什么会自愈| 肛裂是什么原因造成的| 补办手机卡需要什么| k开头的是什么车| 肠炎不能吃什么东西| 75b是什么罩杯| 检测怀孕最准确的方法是什么| 踩指压板有什么好处| 隔夜茶为什么不能喝| 令是什么生肖| 背疼挂什么科室最好| 心慌吃点什么药| 唐僧被封为什么佛| 哥斯拉是什么| 散瞳后需要注意什么| 促甲状腺素低是什么原因| 淀粉可以用什么代替| 耳朵有回音是什么原因| 女的学什么手艺最赚钱| 天罗地网是什么生肖| 为什么打哈欠会传染| 张飞的武器是什么| 坐车头疼是什么原因| 益母草什么时候喝最好| 鼻毛变白什么征兆| 什么的贾宝玉| 乙肝看什么科| 媚字五行属什么| 白露是什么意思| 脖子肿大是什么病的症状| 马来西亚属于什么国家| 手脚软无力是什么原因引起的| 肾b超能检查出什么| 白虎女是什么意思| 三点水一个四读什么| 蜈蚣代表什么生肖| 活性炭和木炭有什么区别| 远视眼是什么意思| 液氨是什么| 柏拉图爱情是什么意思| 女人左眼跳是什么意思| 灵芝不能和什么一起吃| cnd是什么意思| 枳是什么意思| 手不释卷的释是什么意思| 海灵菇是什么东西| 91年是什么年| 地壳是什么| 肝功能2项是指什么| 驾驶证c1和c2有什么区别| 甲胎蛋白是检查什么| 手痒脚痒是什么原因| 用脚尖走路有什么好处| ab型血为什么容易得精神病| 相夫教子是什么意思| 六根清净是什么意思| 女生有美人尖代表什么| 什么钱最不值钱| 过敏性紫癜是什么症状| 舌头边缘有齿痕是什么原因| 神什么气什么| 经常梦遗是什么原因| 怀孕初期胸部有什么变化| 荔枝什么品种最贵| 得过且过是什么意思| 尿糖2个加号是什么意思| 960万平方千米是指我国的什么| 螺旋杆菌吃什么药| 冷藏是什么意思| 脂膜炎是什么病严重吗| 什么是数位板| 冰箱为什么老是结冰| 阴部痒是什么原因| 吃什么东西可以补血| 石膏的主要成分是什么| 过生日送什么礼物| 劝君更尽一杯酒的下一句是什么| 什么是关税| 大姨妈没来是什么原因| 基础医学是什么| 什么颜色显黑| 敦促的意思是什么| 3个土念什么| 什么是胶体| 血液为什么是红色的| 肝火是什么原因引起的| 泌尿系统感染有什么症状| 梦见月经血是什么预兆| 喝红枣水有什么好处和坏处| blanc什么意思| 什么时候普及高中| 月经一个月来两次什么原因| 润字五行属什么| 因小失大是什么生肖| 组胺过敏是什么意思| 小老弟是什么意思| 哀鸿遍野是什么意思| 今天吃什么| 男女授受不亲是什么意思| 脖子痛挂什么科| 什么化痰效果最好最快| 包皮嵌顿是什么| 热疹症状该用什么药膏| 氰化钾是什么| 什么叫早搏| 翼字五行属什么| 1月底是什么星座| 为什么会得皮炎| 三餐两点什么意思| 惊蛰什么意思| doosan挖掘机是什么牌子| 杭字五行属什么| 红彤彤的什么| 阿尔茨海默症是什么| 肾结石是什么原因| 蛊惑什么意思| 优生四项是检查什么| 欣五行属什么| 完蛋是什么意思| 翻车鱼为什么叫翻车鱼| 世界上最毒的蜘蛛叫什么| 为什么脚臭叫香港脚| 什么叫情商| 鳞状上皮增生什么意思| 属鼠的贵人是什么属相| 吃什么都苦是什么原因| 魂牵梦萦是什么意思| 11.7号是什么星座| 低密度脂蛋白是什么| 贫血的人来姨妈会有什么症状| 猪跟什么生肖配对最好| 为什么不能拜女娲娘娘| 4090是什么意思| 鬼压床是什么意思| 耳塞戴久了有什么危害| 紫藤什么时候开花| 长期便秘吃什么药| 女人左手心痒预示什么| 薏米是什么| 筋膜炎吃什么药好得快| 狗狗假孕是什么症状| 死有余辜是什么意思| 慎重是什么意思| 33周岁属什么生肖| 梦见狮子是什么预兆| 一天当中什么时候血压最高| 北京大学前身叫什么| prn医学上是什么意思| 白内障吃什么药| 迁坟需要准备什么东西| 血小板减少是什么病| 梦到自己拉大便是什么预兆| 妊娠线什么时候长| 来例假能吃什么水果| 腹部痛挂什么科| 第一次见家长送什么礼物好| 马不停蹄是什么生肖| 试纸什么时候用最准确| 胃部检查除了胃镜还有什么方法| 下体瘙痒是什么原因| 坐骨神经痛吃什么药好得快| 下巴底下长痘痘是什么原因| 95年属什么的| 百度Jump to content

腾讯网游收入243亿:企业盈利莫忘社会效益

From Wikipedia, the free encyclopedia
(Redirected from Covalent)
A covalent bond forming H2 (right) where two hydrogen atoms share the two electrons
百度 女孩为此大跌眼镜,并发出了“现在是不是流行嫁男人了”的疑问。

A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding.[1] For many molecules, the sharing of electrons allows each atom to attain the equivalent of a full valence shell, corresponding to a stable electronic configuration. In organic chemistry, covalent bonding is much more common than ionic bonding.

Covalent bonding also includes many kinds of interactions, including σ-bonding, π-bonding, metal-to-metal bonding, agostic interactions, bent bonds, three-center two-electron bonds and three-center four-electron bonds.[2][3] The term "covalence" was introduced by Irving Langmuir in 1919, with Nevil Sidgwick using "co-valent link" in the 1920s. Merriam-Webster dates the specific phrase covalent bond to 1939,[4] recognizing its first known use. The prefix co- (jointly, partnered) indicates that "co-valent" bonds involve shared "valence", as detailed in valence bond theory.

In the molecule H
2
, the hydrogen atoms share the two electrons via covalent bonding.[5] Covalency is greatest between atoms of similar electronegativities. Thus, covalent bonding does not necessarily require that the two atoms be of the same elements, only that they be of comparable electronegativity. Covalent bonding that entails the sharing of electrons over more than two atoms is said to be delocalized.

History

[edit]
Early concepts in covalent bonding arose from this kind of image of the molecule of methane. Covalent bonding is implied in the Lewis structure by indicating electrons shared between atoms.

The term covalence in regard to bonding was first used in 1919 by Irving Langmuir in a Journal of the American Chemical Society article entitled "The Arrangement of Electrons in Atoms and Molecules". Langmuir wrote that "we shall denote by the term covalence the number of pairs of electrons that a given atom shares with its neighbors."[6]

The idea of covalent bonding can be traced several years before 1919 to Gilbert N. Lewis, who in 1916 described the sharing of electron pairs between atoms[7] (and in 1926 he also coined the term "photon" for the smallest unit of radiant energy). He introduced the Lewis notation or electron dot notation or Lewis dot structure, in which valence electrons (those in the outer shell) are represented as dots around the atomic symbols. Pairs of electrons located between atoms represent covalent bonds. Multiple pairs represent multiple bonds, such as double bonds and triple bonds. An alternative form of representation, not shown here, has bond-forming electron pairs represented as solid lines.[8]

Lewis proposed that an atom forms enough covalent bonds to form a full (or closed) outer electron shell. In the diagram of methane shown here, the carbon atom has a valence of four and is, therefore, surrounded by eight electrons (the octet rule), four from the carbon itself and four from the hydrogens bonded to it. Each hydrogen has a valence of one and is surrounded by two electrons (a duet rule) – its own one electron plus one from the carbon. The numbers of electrons correspond to full shells in the quantum theory of the atom; the outer shell of a carbon atom is the n = 2 shell, which can hold eight electrons, whereas the outer (and only) shell of a hydrogen atom is the n = 1 shell, which can hold only two.[9]

While the idea of shared electron pairs provides an effective qualitative picture of covalent bonding, quantum mechanics is needed to understand the nature of these bonds and predict the structures and properties of simple molecules. Walter Heitler and Fritz London are credited with the first successful quantum mechanical explanation of a chemical bond (molecular hydrogen) in 1927.[10] Their work was based on the valence bond model, which assumes that a chemical bond is formed when there is good overlap between the atomic orbitals of participating atoms.

Types of covalent bonds

[edit]

Atomic orbitals (except for s orbitals) have specific directional properties leading to different types of covalent bonds. Sigma (σ) bonds are the strongest covalent bonds and are due to head-on overlapping of orbitals on two different atoms. A single bond is usually a σ bond. Pi (π) bonds are weaker and are due to lateral overlap between p (or d) orbitals. A double bond between two given atoms consists of one σ and one π bond, and a triple bond is one σ and two π bonds.[8]

Covalent bonds are also affected by the electronegativity of the connected atoms which determines the chemical polarity of the bond. Two atoms with equal electronegativity will make nonpolar covalent bonds such as H–H. An unequal relationship creates a polar covalent bond such as with H?Cl. However polarity also requires geometric asymmetry, or else dipoles may cancel out, resulting in a non-polar molecule.[8]

Covalent structures

[edit]

There are several types of structures for covalent substances, including individual molecules, molecular structures, macromolecular structures and giant covalent structures. Individual molecules have strong bonds that hold the atoms together, but generally, there are negligible forces of attraction between molecules. Such covalent substances are usually gases, for example, HCl, SO2, CO2, and CH4. In molecular structures, there are weak forces of attraction. Such covalent substances are low-boiling-temperature liquids (such as ethanol), and low-melting-temperature solids (such as iodine and solid CO2). Macromolecular structures have large numbers of atoms linked by covalent bonds in chains, including synthetic polymers such as polyethylene and nylon, and biopolymers such as proteins and starch. Network covalent structures (or giant covalent structures) contain large numbers of atoms linked in sheets (such as graphite), or 3-dimensional structures (such as diamond and quartz). These substances have high melting and boiling points, are frequently brittle, and tend to have high electrical resistivity. Elements that have high electronegativity, and the ability to form three or four electron pair bonds, often form such large macromolecular structures.[11]

One- and three-electron bonds

[edit]
Lewis and MO diagrams of an individual 2e? bond and 3e? bond

Bonds with one or three electrons can be found in radical species, which have an odd number of electrons. The simplest example of a 1-electron bond is found in the dihydrogen cation, H+
2
. One-electron bonds often have about half the bond energy of a 2-electron bond, and are therefore called "half bonds". However, there are exceptions: in the case of dilithium, the bond is actually stronger for the 1-electron Li+
2
than for the 2-electron Li2. This exception can be explained in terms of hybridization and inner-shell effects.[12]

The simplest example of three-electron bonding can be found in the helium dimer cation, He+
2
. It is considered a "half bond" because it consists of only one shared electron (rather than two);[13] in molecular orbital terms, the third electron is in an anti-bonding orbital which cancels out half of the bond formed by the other two electrons. Another example of a molecule containing a 3-electron bond, in addition to two 2-electron bonds, is nitric oxide, NO. The oxygen molecule, O2 can also be regarded as having two 3-electron bonds and one 2-electron bond, which accounts for its paramagnetism and its formal bond order of 2.[14] Chlorine dioxide and its heavier analogues bromine dioxide and iodine dioxide also contain three-electron bonds.

Molecules with odd-electron bonds are usually highly reactive. These types of bond are only stable between atoms with similar electronegativities.[14]

Dioxygen is sometimes represented as obeying the octet rule with a double bond (O=O) containing two pairs of shared electrons.[15] However the ground state of this molecule is paramagnetic, indicating the presence of unpaired electrons. Pauling proposed that this molecule actually contains two three-electron bonds and one normal covalent (two-electron) bond.[16] The octet on each atom then consists of two electrons from each three-electron bond, plus the two electrons of the covalent bond, plus one lone pair of non-bonding electrons. The bond order is 1+0.5+0.5=2.

Modified Lewis structures with 3e bonds
Nitric oxide
Dioxygen

Resonance

[edit]

There are situations whereby a single Lewis structure is insufficient to explain the electron configuration in a molecule and its resulting experimentally-determined properties, hence a superposition of structures is needed. The same two atoms in such molecules can be bonded differently in different Lewis structures (a single bond in one, a double bond in another, or even none at all), resulting in a non-integer bond order. The nitrate ion is one such example with three equivalent structures. The bond between the nitrogen and each oxygen is a double bond in one structure and a single bond in the other two, so that the average bond order for each N–O interaction is ?2 + 1 + 1/3? = ?4/3?.[8]

Aromaticity

[edit]

In organic chemistry, when a molecule with a planar ring obeys Hückel's rule, where the number of π electrons fit the formula 4n + 2 (where n is an integer), it attains extra stability and symmetry. In benzene, the prototypical aromatic compound, there are 6 π bonding electrons (n = 1, 4n + 2 = 6). These occupy three delocalized π molecular orbitals (molecular orbital theory) or form conjugate π bonds in two resonance structures that linearly combine (valence bond theory), creating a regular hexagon exhibiting a greater stabilization than the hypothetical 1,3,5-cyclohexatriene.[9]

In the case of heterocyclic aromatics and substituted benzenes, the electronegativity differences between different parts of the ring may dominate the chemical behavior of aromatic ring bonds, which otherwise are equivalent.[9]

Hypervalence

[edit]

Certain molecules such as xenon difluoride and sulfur hexafluoride have higher coordination numbers than would be possible due to strictly covalent bonding according to the octet rule. This is explained by the three-center four-electron bond ("3c–4e") model which interprets the molecular wavefunction in terms of non-bonding highest occupied molecular orbitals in molecular orbital theory and resonance of sigma bonds in valence bond theory.[17]

Electron deficiency

[edit]

In three-center two-electron bonds ("3c–2e") three atoms share two electrons in bonding. This type of bonding occurs in boron hydrides such as diborane (B2H6), which are often described as electron deficient because there are not enough valence electrons to form localized (2-centre 2-electron) bonds joining all the atoms. However, the more modern description using 3c–2e bonds does provide enough bonding orbitals to connect all the atoms so that the molecules can instead be classified as electron-precise.

Each such bond (2 per molecule in diborane) contains a pair of electrons which connect the boron atoms to each other in a banana shape, with a proton (the nucleus of a hydrogen atom) in the middle of the bond, sharing electrons with both boron atoms. In certain cluster compounds, so-called four-center two-electron bonds also have been postulated.[18]

Quantum mechanical description

[edit]

After the development of quantum mechanics, two basic theories were proposed to provide a quantum description of chemical bonding: valence bond (VB) theory and molecular orbital (MO) theory. A more recent quantum description[19] is given in terms of atomic contributions to the electronic density of states.

Comparison of VB and MO theories

[edit]

The two theories represent two ways to build up the electron configuration of the molecule.[20] For valence bond theory, the atomic hybrid orbitals are filled with electrons first to produce a fully bonded valence configuration, followed by performing a linear combination of contributing structures (resonance) if there are several of them. In contrast, for molecular orbital theory, a linear combination of atomic orbitals is performed first, followed by filling of the resulting molecular orbitals with electrons.[8]

The two approaches are regarded as complementary, and each provides its own insights into the problem of chemical bonding. As valence bond theory builds the molecular wavefunction out of localized bonds, it is more suited for the calculation of bond energies and the understanding of reaction mechanisms. As molecular orbital theory builds the molecular wavefunction out of delocalized orbitals, it is more suited for the calculation of ionization energies and the understanding of spectral absorption bands.[21]

At the qualitative level, both theories contain incorrect predictions. Simple (Heitler–London) valence bond theory correctly predicts the dissociation of homonuclear diatomic molecules into separate atoms, while simple (Hartree–Fock) molecular orbital theory incorrectly predicts dissociation into a mixture of atoms and ions. On the other hand, simple molecular orbital theory correctly predicts Hückel's rule of aromaticity, while simple valence bond theory incorrectly predicts that cyclobutadiene has larger resonance energy than benzene.[22]

Although the wavefunctions generated by both theories at the qualitative level do not agree and do not match the stabilization energy by experiment, they can be corrected by configuration interaction.[20] This is done by combining the valence bond covalent function with the functions describing all possible ionic structures or by combining the molecular orbital ground state function with the functions describing all possible excited states using unoccupied orbitals. It can then be seen that the simple molecular orbital approach overestimates the weight of the ionic structures while the simple valence bond approach neglects them. This can also be described as saying that the simple molecular orbital approach neglects electron correlation while the simple valence bond approach overestimates it.[20]

Modern calculations in quantum chemistry usually start from (but ultimately go far beyond) a molecular orbital rather than a valence bond approach, not because of any intrinsic superiority in the former but rather because the MO approach is more readily adapted to numerical computations. Molecular orbitals are orthogonal, which significantly increases the feasibility and speed of computer calculations compared to nonorthogonal valence bond orbitals.

Covalency from atomic contribution to the electronic density of states

[edit]

Evaluation of bond covalency is dependent on the basis set for approximate quantum-chemical methods such as COOP (crystal orbital overlap population),[23] COHP (Crystal orbital Hamilton population),[24] and BCOOP (Balanced crystal orbital overlap population).[25] To overcome this issue, an alternative formulation of the bond covalency can be provided in this way.

The mass center ?? of an atomic orbital with quantum numbers ?? ?? ?? ?? for atom A is defined as

where is the contribution of the atomic orbital of the atom A to the total electronic density of states ?? of the solid

where the outer sum runs over all atoms A of the unit cell. The energy window ?? is chosen in such a way that it encompasses all of the relevant bands participating in the bond. If the range to select is unclear, it can be identified in practice by examining the molecular orbitals that describe the electron density along with the considered bond.

The relative position ?? of the mass center of levels of atom A with respect to the mass center of levels of atom B is given as

where the contributions of the magnetic and spin quantum numbers are summed. According to this definition, the relative position of the A levels with respect to the B levels is

where, for simplicity, we may omit the dependence from the principal quantum number ?? in the notation referring to ??

In this formalism, the greater the value of ?? the higher the overlap of the selected atomic bands, and thus the electron density described by those orbitals gives a more covalent A?B bond. The quantity ?? is denoted as the covalency of the A?B bond, which is specified in the same units of the energy ??.

Analogous effect in nuclear systems

[edit]

An analogous effect to covalent binding is believed to occur in some nuclear systems, with the difference that the shared fermions are quarks rather than electrons.[26] High energy proton-proton scattering cross-section indicates that quark interchange of either u or d quarks is the dominant process of the nuclear force at short distance. In particular, it dominates over the Yukawa interaction where a meson is exchanged.[27] Therefore, covalent binding by quark interchange is expected to be the dominating mechanism of nuclear binding at small distance when the bound hadrons have covalence quarks in common.[28]

See also

[edit]

References

[edit]
  1. ^ Whitten, Kenneth W.; Gailey, Kenneth D.; Davis, Raymond E. (1992). "7-3 Formation of covalent bonds". General Chemistry (4th ed.). Saunders College Publishing. p. 264. ISBN 0-03-072373-6.
  2. ^ March, Jerry (1992). Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. John Wiley & Sons. ISBN 0-471-60180-2.
  3. ^ Gary L. Miessler; Donald Arthur Tarr (2004). Inorganic Chemistry. Prentice Hall. ISBN 0-13-035471-6.
  4. ^ Merriam-Webster – Collegiate Dictionary (2000).
  5. ^ "Chemical Bonds". Hyperphysics.phy-astr.gsu.edu. Retrieved 2025-08-07.
  6. ^ Langmuir, Irving (2025-08-07). "The Arrangement of Electrons in Atoms and Molecules". Journal of the American Chemical Society. 41 (6): 868–934. doi:10.1021/ja02227a002.
  7. ^ Lewis, Gilbert N. (2025-08-07). "The atom and the molecule". Journal of the American Chemical Society. 38 (4): 762–785. doi:10.1021/ja02261a002. S2CID 95865413.
  8. ^ a b c d e McMurry, John (2016). Chemistry (7 ed.). Pearson. ISBN 978-0-321-94317-0.
  9. ^ a b c Bruice, Paula (2016). Organic Chemistry (8 ed.). Pearson. ISBN 978-0-13-404228-2.
  10. ^ Heitler, W.; London, F. (1927). "Wechselwirkung neutraler Atome und hom?opolare Bindung nach der Quantenmechanik" [Interaction of neutral atoms and homeopolar bonds according to quantum mechanics]. Zeitschrift für Physik. 44 (6–7): 455–472. Bibcode:1927ZPhy...44..455H. doi:10.1007/bf01397394. S2CID 119739102. English translation in Hettema, H. (2000). Quantum Chemistry: Classic Scientific Papers. World Scientific. p. 140. ISBN 978-981-02-2771-5. Retrieved 2025-08-07.
  11. ^ Stranks, D. R.; Heffernan, M. L.; Lee Dow, K. C.; McTigue, P. T.; Withers, G. R. A. (1970). Chemistry: A structural view. Carlton, Vic.: Melbourne University Press. p. 184. ISBN 0-522-83988-6.
  12. ^ Weinhold, F.; Landis, C. (2005). Valency and Bonding. Cambridge. pp. 96–100. ISBN 0-521-83128-8.
  13. ^ Harcourt, Richard D., ed. (2015). "Chapter 2: Pauling "3-Electron Bonds", 4-Electron 3-Centre Bonding, and the Need for an "Increased-Valence" Theory". Bonding in Electron-Rich Molecules: Qualitative Valence-Bond Approach via Increased-Valence Structures. Springer. ISBN 9783319166766.
  14. ^ a b Pauling, L. (1960). The Nature of the Chemical Bond. Cornell University Press. pp. 340–354.
  15. ^ For example, General chemistry by R.H.Petrucci, W.S.Harwood and F.G.Herring (8th ed., Prentice-Hall 2002, ISBN 0-13-014329-4, p.395) writes the Lewis structure with a double bond, but adds a question mark with the explanation that there is some doubt about the validity of this structure because it fails to account for the observed paramagnetism.
  16. ^ L. Pauling The Nature of the Chemical Bond (3rd ed., Oxford University Press 1960) chapter 10.
  17. ^ Weinhold, F.; Landis, C. (2005). Valency and Bonding. Cambridge University Press. pp. 275–306. ISBN 0521831288.
  18. ^ Hofmann, K.; Prosenc, M. H.; Albert, B. R. (2007). "A new 4c–2e bond in B
    6
    H?
    7
    ". Chemical Communications. 2007 (29): 3097–3099. doi:10.1039/b704944g. PMID 17639154.
  19. ^ Cammarata, Antonio; Rondinelli, James M. (21 September 2014). "Covalent dependence of octahedral rotations in orthorhombic perovskite oxides". Journal of Chemical Physics. 141 (11): 114704. Bibcode:2014JChPh.141k4704C. doi:10.1063/1.4895967. PMID 25240365.
  20. ^ a b c Atkins, P. W. (1974). Quanta: A Handbook of Concepts. Oxford University Press. pp. 147–148. ISBN 978-0-19-855493-6.
  21. ^ James D. Ingle Jr. and Stanley R. Crouch, Spectrochemical Analysis, Prentice Hall, 1988, ISBN 0-13-826876-2
  22. ^ Anslyn, Eric V. (2006). Modern Physical Organic Chemistry. University Science Books. ISBN 978-1-891389-31-3.
  23. ^ Hughbanks, Timothy; Hoffmann, Roald (2025-08-07). "Chains of trans-edge-sharing molybdenum octahedra: metal-metal bonding in extended systems". Journal of the American Chemical Society. 105 (11): 3528–3537. doi:10.1021/ja00349a027.
  24. ^ Dronskowski, Richard; Bloechl, Peter E. (2025-08-07). "Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations". The Journal of Physical Chemistry. 97 (33): 8617–8624. doi:10.1021/j100135a014.
  25. ^ Grechnev, Alexei; Ahuja, Rajeev; Eriksson, Olle (2025-08-07). "Balanced crystal orbital overlap population—a tool for analysing chemical bonds in solids". Journal of Physics: Condensed Matter. 15 (45): 7751. Bibcode:2003JPCM...15.7751G. doi:10.1088/0953-8984/15/45/014. ISSN 0953-8984. S2CID 250757642.
  26. ^ Brodsky, S. J. (2017). "Novel Features of Nuclear Chromodynamics". The European Physical Journal A. 53 (3): 48. Bibcode:2017EPJA...53...48B. doi:10.1140/epja/i2017-12234-5. OSTI 1341388. S2CID 126305939.
  27. ^ Brodsky, S. J.; Mueller, A. H. (1988). "Using Nuclei to Probe Hadronization in QCD". Physics Letters B. 206 (4): 685. Bibcode:1988PhLB..206..685B. doi:10.1016/0370-2693(88)90719-8. OSTI 1448604.
  28. ^ Bashkanova, M.; Brodsky, S. J.; Clement, H. (2013). "Novel Six-Quark Hidden-Color Dibaryon States in QCD". Physics Letters B. 727 (4–5): 438. arXiv:1308.6404. Bibcode:2013PhLB..727..438B. doi:10.1016/j.physletb.2013.10.059. S2CID 30153514.

Sources

[edit]
[edit]
小孩下半夜咳嗽是什么原因 大腿内侧发黑是什么原因 教科书是什么意思 霉菌性阴炎是什么原因引起的女 家族是什么意思
早上嘴苦是什么原因 九月十二号是什么星座 孕妇可以吃什么零食 梦见死人笑什么预兆 靖国神社是什么
大条是什么意思 乳头突然疼痛什么原因 什么水果上火 蚊子咬了涂什么 孝顺的真正含义是什么
双鱼男喜欢什么样的女生 btc是什么货币 鲤鱼最爱吃什么食物 金蝉脱壳什么意思 em什么意思
栀子花黄叶是什么原因hcv8jop1ns9r.cn 阑尾炎吃什么消炎药hcv9jop4ns6r.cn 耳后淋巴结肿大吃什么消炎药hcv7jop6ns1r.cn 睡觉放屁是什么原因hcv7jop9ns6r.cn 白蚂蚁长什么样子图片hcv9jop0ns0r.cn
暹什么意思hcv7jop9ns9r.cn mac代表什么wuhaiwuya.com 身怀六甲是什么意思96micro.com 眼睛浮肿是什么原因hcv8jop6ns4r.cn 什么是精神病hcv8jop1ns0r.cn
1990年是什么命hcv8jop8ns9r.cn 月经三个月没来是什么原因hcv8jop9ns5r.cn 皮肤痒挂什么科hcv9jop2ns6r.cn 沙土地适合种什么农作物sscsqa.com 打玻尿酸有什么副作用吗hcv9jop6ns1r.cn
肌酐是什么指标hcv8jop7ns2r.cn 血糖高是什么原因造成的hcv9jop3ns7r.cn 腹部痛挂什么科hcv8jop1ns6r.cn 自言自语的近义词是什么hcv8jop3ns6r.cn 11月14日什么星座hcv7jop4ns7r.cn
百度